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When you look around, do you ever won-
der where everything came from and how it was 
made? Have you ever contemplated why a tree is 
hard, a sponge is soft, and a breeze is invisible?

By faith we understand that the universe was  
formed at God’s command, so that what is seen  

was not made out of what was visible.  
—Hebrews 11:3, niv

Welcome to the world of chemistry! This year 
you are going to take a journey that allows you to 
explore God’s creation with the eyes of a scientist. 
Studying God’s creation at the molecular and atomic level can enable you to understand 
how wonderfully everything fits together in this world God has created for us.

How many are your works, Lord! In wisdom  
you made them all; the earth is full of your creatures.  

—Psalm 104:24, niv

Science is the endeavor of explaining the truth of the world around us, and God is the 
source of both creation and truth. You will discover that proper application of scientific 
principles will help you uncover how the world around you operates. Since science and 
faith both search for truth, they complement each other. The more you know about your 
world, the more you will wonder at the complex beauty of God’s creation. 

He has made everything beautiful in its time. He has also set eternity  
in the human heart; yet no one can fathom what God has done from beginning to end.  

—Ecclesiastes 3:11, niv

God gave humans dominion over the earth, so we can understand many things about 
it. This textbook is not just a compilation of facts and figures for you to memorize. 
This textbook is designed to take you on a remarkable journey that involves facts about 
chemistry, figures to help you understand the facts, and truth from your Creator. We at 
Apologia pray that this text will enable you to say:

“How great are your works, Lord, how profound your thoughts!”  
—Psalm 92:5, niv

WELCOME
first reactions
What do you see when you look at the 
periodic table of elements? At first glance, 
most students see so many scientific symbols 
that they become intimidated. But the 
periodic table is the essence of chemistry. 
The years of discovery and knowledge 
summarized in it make it unlike any other 
common science tool.  

From the galaxies in the universe to the 
tiniest microscopic cell, you experience the 
elements wherever you look! 
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Our understanding of life has changed more 
in the past 2 centuries than all the previously 
recorded span of human history. The earth’s 
population has increased more than 5-fold since 
1800, and our life expectancy has nearly doubled 
because of our ability to synthesize medicines, 
control diseases, and increase crop yields. Many 
goods are now made of polymers (plastics) and 
ceramics instead of wood and metal because of 
our ability to manipulate and manufacture materials with properties unlike any found in 
nature. In one way or another, all of these changes involve chemistry. 

What is chemistry? Quite simply, chemistry is the study of matter. Of course, this 
definition doesn’t do us much good unless we know what matter is. So, to understand 
what chemistry is, we first need to define matter. 

 Matter—Anything that has mass and takes up space.

If matter is defined in this way, almost everything around us is matter. Your family car 
has a lot of mass. That’s why it’s so heavy. It also takes up a lot of space in the driveway 
or the garage. Your car must be made of matter. The food you eat isn’t as heavy as a car, 
but it still has some mass. It also takes up space. So food must be made up of matter as 
well. Indeed, almost everything you see around you is made up of matter because nearly 
everything has mass and takes up space. There is one thing that has no mass and takes up 
no space. It’s all around you right now. Can you think of what it might be? 

You might think that the answer is air. However, that’s not the right answer. Perform 
experiments 1.1 and 1.2 to see what we mean. 

MODULE 1

MEASUREMENT, 
UNITS, AND THE 
SCIENTIFIC 
METHOD

first reactions
When God told Noah to build an ark 300 
cubits long, Noah had to know how long 
a cubit was in order to succeed. Imagine if 
Noah had built an ark 300 inches long! As 
you begin to learn the foundational language 
of chemistry, keep in mind that it is only the 
very beginning of true understanding.
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E X P E R I M E N T  1 . 1

PURPOSE :  To determine if air has mass.

MATERIALS :
•	 Meterstick (A yardstick will work as well, but a 12-inch ruler is not long enough.)
•	 Two 8-inch or larger balloons
•	 2 pieces of string long enough to tie the balloons to the meterstick
•	 Tape
•	 Safety goggles

QUESTION :  Does air have mass?

HYPOTHESIS :  Pick one: Either air has mass or air does not have mass. 

PROCEDURE :
1.	 Without blowing them up, tie the balloons to the strings. Be sure to make the knots 

loose so that you can untie one of the balloons later in the experiment. 
2.	 Tie the other end of each string to an end of the meterstick. Try to attach the 

strings as close to the ends of the meterstick as possible. 
3.	 Once the strings have been tied to the meterstick, tape them down so that they cannot move. 
4.	 Go into your bathroom and pull back the shower curtain so that a large portion of  

the curtain rod is bare. Balance the meterstick (with the balloons attached) on the 
bare part of the shower curtain rod. You should be able to balance it very well. If 
you don’t have a shower curtain rod or you are having trouble using yours, you can 
use any surface that is adequate for delicate balancing like the upper part of a chair. 

5.	 Once you have the meterstick balanced, stand back and look at it. The meterstick 
balances now because the total mass on one side equals the total mass on the other 
side. To knock it off balance, you would need to move the meterstick or add more 
mass to one side. You will do the latter. 

6.	 Have someone else hold the meterstick so that it does not move. For this experiment 
to work properly, the meterstick must stay stationary. 

7.	 While the meterstick is held stationary, remove one of the balloons from its string (do 
not untie the string from the meterstick), and blow up the balloon. 

8.	 Tie the balloon closed so that the air does not escape, then reattach it to its string. 
9.	 Have the person holding the meterstick let go. If the meterstick was not moved while 

you were blowing up the balloon, it will tilt toward the side with the inflated balloon as 
soon as the person lets it go. This is because you added air to the balloon. Since air 
has mass, it knocks the meterstick off balance. So air does have mass!

10.	 Clean up and return everything to the proper place.

CONCLUSION :  What did you think? Write something about what you observed related to 
the fact that air has mass.
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E X P E R I M E N T  1 . 2

PURPOSE :  To determine if air takes up space.

MATERIALS :
•	 Tall glass
•	 Paper towel
•	 Sink full of water
•	 Safety goggles

QUESTION :  Does air take up space?

HYPOTHESIS :  Pick one: Either air takes up space or air does not take up space.

PROCEDURE : 
1.	 Fill the sink with water until the water level is high enough to submerge the entire 

glass. 
2.	 Make sure the inside of the glass is dry. 
3.	 Wad up the paper towel and shove it down into the bottom of the glass. 
4.	 Turn the glass upside down and be sure that the paper towel does not fall out of 

the glass.
5.	 Submerge the glass upside down in the water, being careful not to tip the glass at 

any time. 
6.	 Wait a few seconds and remove the glass, still being careful not to tilt it. 
7.	 Pull the paper towel out of the glass. You will find that the paper towel is 

completely dry. Even though the glass was submerged in water, the paper towel 
never got wet. Why? When you tipped the glass upside down, there was air inside 
the glass. When you submerged it in the water, the air could not escape the glass, 
so the glass was still full of air. Since air takes up space, there was no room for 
water to enter the glass, so the paper towel stayed dry.

8.	 Repeat the experiment, but this time be sure to tip the glass while it is underwater. 
You will see large bubbles rise to the surface of the water. When you pull the 
glass out, you will find that it has water in it and that the paper towel is wet. This 
is because tilting the glass allowed the air trapped inside it to escape. Once the air 
escaped, there was room for the water to come into the glass.

9.	 Clean up and return everything to the proper place.

CONCLUSION :  What did you think? Write something about what you observed related to the    
      fact that air takes up space.



think about this
Air is typically used as a metaphor for nothingness. It is, however, very complex. Aristotle (384–322 BC) 
is generally given credit for being the first to state that air has weight, although many did not believe him. 
Would it surprise you to know that some 1,400 years before Aristotle, it was known that air had weight? 
It’s true. The Bible tells us that God “gave to the wind its weight and apportioned the waters by measure” 
(Job 28:25). Think about this verse in the context of the timeline of scientific knowledge. Job may have 
lived anywhere from 2300 to 1700 BC. God created everything visible and invisible, including air. The Bible 
is His word, and we can trust it to be true. We explore science to understand what God already knows 
about His creation.
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Now that you see that air does have mass and does take up space, have you figured out 
the correct answer to our original question? What very common thing that is surrounding 
you right now has no mass and takes up no space? The answer is light. As far as scientists 
can tell, light does not have any mass and takes up no space. Light is not considered 
matter. Instead, it is pure energy. Everything else that you see around you is considered 
matter. Chemistry, then, is the study of nearly everything! As you can imagine, studying 
nearly everything can be a very daunting task. However, chemists have found that even 
though there are many forms of matter, they all behave according to a few fundamental 
laws. If we can clearly understand these laws, then we can clearly understand the nature 
of the matter that exists in God’s creation.

Before we start trying to understand these laws, we must step back and ask a more 
fundamental question: How do we study matter? The first thing we have to be able to do 
in order to study matter is to measure it. If we want to study an object, we first must learn 
things like how big it is, how heavy it is, and how old it is. To learn these things, we have 
to make some measurements. The rest of this module explains how scientists measure 
things and what those measurements mean.

UNITS OF MEASUREMENT
Let’s suppose you are making curtains 
for a friend’s windows. You ask him to 
measure the window and give you the 
dimensions so that you can make the 
curtains the right size. Your friend tells 
you that his windows are 50 by 60, so 
that’s how big you make the curtains. 
When you go over to his house, it turns 
out that your curtains are more than 
twice as big as his windows! Your friend 
tells you that he’s certain he measured 
the windows correctly, and you tell your friend that you are certain you measured the 
curtains correctly. 

How can this be? The answer is quite simple. Your friend measured the windows in 
centimeters. You, on the other hand, measured the curtains in inches. The problem was 
not caused by measuring incorrectly. Instead, the problem was the result of measuring 
with different units. 

think about this
“Who has measured the waters in the hollow of 
his hand and marked off the heavens with a span, 
enclosed the dust of the earth in a measure and 
weighed the mountains in scales and the hills in a 
balance?” Isaiah 40:12

Can you determine what the author is trying to do 
here? He is trying to describe the greatness of God by 
using measurements that would have been understood 
by anyone living at this time. How would scientists of 
this day try to describe the greatness of God? 
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 1When we are making measurements, the units we use are just as important as the 
numbers that we get. If your friend had told you that his windows were 50 centimeters 
by 60 centimeters, there would have been no problem. You would have known exactly 
how big to make the curtains. Since he failed to do this, the numbers that he gave you (50 
by 60) were useless. A failure to indicate the units involved in measurements can lead to 
serious problems. For example, the Mars Climate Orbiter, a NASA (National Aeronautics 
and Space Administration) spacecraft built for the exploration of Mars, vanished during 
an attempt to put it into orbit around the planet. In an investigation that followed, 
NASA determined that a mix-up in units had caused the disaster. One team of engineers 
had used metric units in its calculations, while another team had used English units in 
executing an engine burn. The teams did not indicate the units they were using, and as a 
result, we lost a spacecraft worth several billion dollars. 

Scientists should never simply report numbers. They must always include units so that 
everyone knows exactly what the numbers mean. That will be the rule in this chemistry course.

If you answer a question or solve a problem and do not list units  
with the numbers, your answer will be considered incorrect.

These curtains are too long for 
this window because the window 
was measured in centimeters, but 
the curtains were made assuming 
the measurements were in inches.

 The Mars Climate Orbiter  
did not successfully make it  

into orbit because 2 engineering 
teams involved used  

different units in their designs.

FIGURE 1.1
Two Consequences of Not Using Units Properly

Window illustration by David Weiss. Mars Climate Orbiter image courtesy of NASA/JPL/Caltech

Since scientists use units in all of their measurements, it is convenient to define a standard  
set of units that will be used by everyone. This system of standard units is called the 
metric system. If you do not fully understand the metric system, don’t worry. By the end 
of this module, you will be an expert at using it. If you do fully understand the metric 
system, you can skim this section as a review.

THE METRIC SYSTEM
We need to measure many different things when studying matter. First, we must determine 
how much matter exists in the object that we want to study. We know that there is a lot 
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more matter in a car than there is in a feather because a car is heavier. To study an object 
precisely, we need to know exactly how much matter is in it. To accomplish this, we need 
to measure mass and the amount of space the object takes up. So how do we measure the 
object’s mass? In the metric system, the unit for mass is the gram. If an object has a mass of 
10 grams, we know that it has 10 times the matter in an object with a mass of 1 gram. To 
give you an idea of the size of a gram, the average mass of a housefly is about 1 gram. A 
gram is a rather small unit. Most of the things that we will measure will have masses of 10 
to 10,000 grams. For example, this book has a mass of about 2,300 grams. 

Now that we know what the metric unit for mass is, we need to know a little more 
about the concept of mass. Some people might think of mass as weight. That’s not exactly 
true. Mass and weight are 2 different measurements. Mass measures how much matter 
exists in an object. Weight, on the other hand, measures how hard gravity pulls on that 
object. 

For example, if I were to use my bathroom scale and weigh myself, I would find that I 
weigh 150 pounds. However, if I were to take that scale to the moon and weigh myself, I 
would find that I weigh only 25 pounds. Does that mean I’m thinner on the moon than I am 
at home? Of course not. It means that on the moon, gravity is not as strong as it is in my 
house on Earth. 

On the other hand, if I were to measure my mass at home, I would find it to be 68,000 
grams. If I were to measure my mass on the moon, it would still be 68,000 grams. That’s 
the difference between mass and weight. Since weight is a measure of how hard gravity 
pulls, an object weighs different amounts depending on the gravity that is present. Because 
mass measures how much matter is in an object, it does not depend on the gravity present.

Unfortunately, there are many other unit systems in use today besides the metric system. 
In fact, the metric system is probably not the system with which you are most familiar. You 
are probably most familiar with the English system. The English unit for mass is (believe it 
or not) called the slug. Although we will not use the slug often, it is important to understand 
what it means, especially when you study physics. The English system uses pounds as a 
measurement of how much material an object has. However, pounds are not a measure of 
mass; they are a measure of weight. The metric unit for weight is called the Newton. 

There is more to measurements than mass, however. We might also want to measure 
how big an object is. For this, we must use the metric system’s unit for distance, the meter. 
You are probably familiar with a yardstick. A meter is slightly longer than a yardstick. The 
English unit for distance is the foot. There are many other units of distance like inches, 
yards, and miles, but we’ll talk about those a little later.

We also need to be able to measure how much space an object occupies. This 
measurement is commonly called volume and is measured in the metric system with the unit 
called the liter. The main unit for measuring volume in the English system is the gallon. To 
give you an idea of the size of a liter, it takes just under 4 liters to make a gallon.

Finally, we have to be able to measure the passage of time. When studying matter, we 
will see that it has the ability to change. The shape, size, and chemical properties of certain 
substances change over time. It is important to be able to measure time so that we can 
determine how quickly the changes take place. In both the English and metric systems, time 
is measured in seconds. That is a good thing, isn’t it? We know of only one way to measure 
time!
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 1Since it is very important for you to be able to recognize which units correspond 
to which measurements, table 1.1 summarizes what you have just read. The letters 
in parentheses are the commonly used abbreviations for the units listed. You should 
memorize this table.

TABLE 1.1
Physical Quantities and Their Base Units

Physical Quantity Base Metric Unit Base English Unit
Mass gram (g) slug (sl)

Distance meter (m) foot (ft)
Volume liter (L) gallon (gal)

Time second (s) second (s)

MANIPULATING UNITS
Let’s suppose we asked you to measure the width of your home’s kitchen using the English 
system. What unit would you use? Most likely, you would express your measurement in 
feet. However, suppose instead we asked you to measure the diameter of a penny. Would 
you still use the foot as your measurement unit? Probably not. Since you know the English 
system already, you would probably recognize that inches are also a unit for distance; 
since a penny is relatively small, you would use inches instead of feet. In the same way, if 
we asked you to measure the distance between 2 cities, you would probably express your 
measurement in terms of miles, not feet. This is why we used the term base English unit in 
table 1.1. Even though the English system’s normal unit for distance is the foot, there are 
alternative units for length when measuring very short or very long distances. The same 
holds true for other English units. For example, volume can be measured in cups, pints, 
and ounces. We choose the unit based on the object to be measured.

The metric system also has alternative units for measuring small things compared 
to measuring big things. These alternative units are constructed by placing a prefix 
in front of the metric base unit. You will soon see the metric system is easier to use 
and understand than the English system because the prefixes always have the same 
relationship to the base unit, regardless of what measurement is used.

To use a larger or smaller scale in the metric system, simply add a prefix to the base 
unit. For example, in the metric system, the prefix centi- means one-hundredth, or 0.01. 
So, if we wanted to measure the length of a sewing needle in the metric system, we would 
probably express the measurement with the centimeter unit. Since a centimeter is one-
hundredth of a meter, it can be used to measure relatively small things. On the other hand, 
the prefix kilo- means 1,000. If we want to measure the distance between 2 states, we 
would probably use the kilometer. Since each kilometer is 1,000 times longer than the 
meter, it can be used to measure long things.

The beauty of the metric system is that these prefixes mean the same thing regardless of 
the physical quantity being measured! If we were measuring something with a very large 
mass (such as a car or boat), then we would use the kilogram unit. One kilogram is the 
same as 1,000 grams. In the same way, if we were measuring something that had a large 
volume, we might use the kiloliter, which is 1,000 liters. Adding a kilo- prefix to a unit 
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multiplies the scale of the unit by 1,000—that is, 1,000 times larger than the base unit scale. 
Compare this incredibly logical system of units to the chaotic English system. If we 

want to measure something short, we use the inch unit, which is equal to one-twelfth of a 
foot. On the other hand, if we want to measure something with small volume, we might 
use the quart unit, which is equal to one-fourth of a gallon. In the English system, every 
alternative unit has a different relationship to the base unit, and we must remember all of 
those crazy numbers. We have to remember that there are 12 inches in a foot, 3 feet in a 
yard, and 5,280 feet in a mile, while at the same time remembering that for volume there 
are 8 ounces in a cup, 2 cups in a pint, 2 pints in a quart, and 4 quarts in a gallon. That’s 
a lot to memorize! Thankfully, the majority of science operates around the metric system.

In the metric system, all we have to remember is what the prefix means. Since the centi- 
prefix means one-hundredth, then we know that 1 centimeter is one-hundredth of a meter, 
1 centiliter is one-hundredth of a liter, and 1 centigram is one-hundredth a gram. Since 
the kilo- prefix means 1,000,  we know that there are 1,000 meters in a kilometer, 1,000 
grams in a kilogram, and 1,000 liters in a kiloliter. Doesn’t that make a lot more sense?

Another advantage to the metric system is that the prefixes are all based on a factor 
of 10. Table 1.2 summarizes the most commonly used prefixes and their numerical 
meanings. The prefixes in boldface type are the ones that we will use over and over again. 
Memorize those 3 prefixes and their meanings before you take the test for this module. 
The commonly used abbreviations for these prefixes are listed in parentheses.

TABLE 1.2
Common Prefixes Used in the Metric System

Prefix Numerical Meaning
micro (µ) 0.00001
milli (m) 0.001
centi (c) 0.01

deci (d) 0.1
deca (D) 10
hecta (H) 100
kilo (k) 1,000
mega (M) 1,000,000

Remember that each of these prefixes, when added to a base unit, makes an alternative 
scale for measurement. If you wanted to measure the length of something small, you 
would have all sorts of options for which unit to use. If you wanted to measure the length 
of someone’s foot, you could use the decimeter. Since the decimeter is one-tenth of a meter, 
it measures things that are only slightly smaller than a meter. On the other hand, if you 
wanted to measure the length of a sewing needle, you could use the centimeter because 
a sewing needle is significantly smaller than a meter. Or if you want to measure the 
thickness of a piece of paper, you might use the millimeter since it is one-thousandth of a 
meter, which is a really small unit.

You can see that the metric system is much more logical and versatile than the English 
system. That is, in part, why scientists and most countries in the world use it as their main 
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 1system of measurement. With the exception of the United States, almost every country 
in the world uses the metric system as its standard system of units. Since scientists 
in the United States frequently work with scientists from other countries around the 
world, they must use and understand the metric system. Throughout all of the modules 
of this chemistry course, the English system of measurement will be presented only for 
illustration purposes. Since scientists must thoroughly understand the metric system, it 
will be the main system of units that we will use.

CONVERTING BETWEEN UNITS
Now that you understand what prefixes are and how they are used in the metric system, 
you must become familiar with converting between units within the metric system. In 
other words, if you measure the length of an object in centimeters, you should also be 
able to convert your answer to any other distance unit. For example, if you measure the 
length of a sewing needle in centimeters, you should be able to convert that length to 
millimeters, decimeters, meters, etc. Accomplishing this task is relatively simple as long 
as you remember the skills you learned in multiplying fractions. Suppose we asked you to 
complete the following problem:

 7      64
   64 

x 
13 

=

There are 2 ways to figure out the answer. The first way would be to multiply the 
numerators and the denominators together and then simplify the fraction. If you did it 
that way, it would look something like this:

 7      64    448     7
 64 

x  
13 

=
 832 

=
 13

You could get the answer much more quickly, however, if you remember that when 
multiplying fractions, common factors in the numerator and the denominator cancel each 
other out. The 64 in the numerator cancels with the 64 in the denominator, and the only 
factors left are the 7 in the numerator and the 13 in the denominator. In this way, you 
reach the final answer in one less step:

 7      64      7
 64 

x  
13  

=
 13

Another skill in multiplying fractions you will need is illustrated in this next equation:

   7      3    21
 13 

x  
3 

=
 39

Notice what happens when the original fraction is multiplied by a value equal to 1. 
The answer is equal to the original fraction, but it looks different. Multiplying a fraction 
by a value of 1 does not change the value of the fraction.

We will use these fraction concepts in converting between units. Suppose we measure 
the length of a pencil to be 15.1 centimeters, but the person who wants to know the 
length of the pencil would like us to tell him the answer in meters. How would we 
convert between centimeters and meters? First, we would need to know the relationship 
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between centimeters and meters. According to table 1.2, centi- means 0.01. So 1 
centimeter is the same thing as 0.01 meters. In mathematical form, we would say:

1 centimeter = 0.01 meter 

Look what happens when we divide both sides by 1 centimeter: 

1 centimeter      0.01 meter 
 1 centimeter  

= 
1 centimeter

The fraction on the right equals 1! Do you see how that works? If 1 centimeter equals 
0.01 meters, then the numerator and the denominator on the right side are saying the 
same thing, which is why that fraction equals 1. So if we use this fraction and multiply 
it by a measurement, then we will not change the value of the measurement. We call this 
fraction a conversion factor.

Now that we know how centimeters and meters relate to one another, we can convert 
from one to another. First, we write down the measurement that we know:

15.1 centimeters

We then realize that any number can be expressed as a fraction by putting it over the 
number 1. So we can rewrite our measurement as:

15.1 centimeters
1

Now we can convert that measurement into meters by multiplying it with the 
conversion factor we determined above. We have to do it the right way so that the 
original measurement unit cancels out when multiplied by the conversion factor. Here’s 
how we do it:

15.1 centimeters          0.01 meter 
             1                

x  
 1 centimeter    

=   .151 meter

       Given Unit      Conversion Factor     Wanted Unit

So 15.1 centimeters is the same as 0.151 meters. This conversion method, called 
the factor-label method, works for 2 reasons. First, since 0.01 meters is the same as 1 
centimeter, multiplying our measurement by 0.01 meters over 1 centimeter is the same as 
multiplying by 1. Since nothing changes when we multiply by 1, we haven’t altered the 
value of our measurement at all. Second, by putting the 1 centimeter in the denominator 
of the second fraction, we allow the centimeters unit to cancel (just like the 64 canceled 
in the previous discussion). Once the centimeters unit has canceled, the only thing left is 
meters, so we know that our measurement is now in meters. 

This is how we will do all of our factor-label setups. We will first write the 
measurement we are given in fraction form by putting it over 1. We will then put the 
unit we do not want in the denominator of the conversion factor and put the unit we do 
want in the numerator. Finally, the numerical meaning of any prefixes needs to go on the 
opposite side of the conversion factor to get the fraction to equal 1. We will see many 
examples of this method, so don’t be concerned if you are a little confused right now. 
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 1Here is a list of steps for the factor-label method.

1.	 Create a fraction out of the given measurement by placing it over 1.
2.	 Place the original measurement unit in the denominator of the conversion factor.
3.	 Place the wanted unit in the numerator of the conversion factor.
4.	 Place the numerical meaning of any prefixes on the opposite side of the 

conversion factor.
5.	 Multiply the given measurement fraction by the conversion factor.

It may seem odd that words can be treated exactly the same as numbers, but 
measuring units have just that property. Whenever a measurement is used in any 
mathematical equation, the units for that measurement must be included in the equation. 
Those units are then treated the same way numbers are treated. We will come back to this 
point in an upcoming section of this module.

We will be using the factor-label method for many other types of problems throughout 
this course, so it is very, very important for you to learn it. Also, since we will be using 
it so often, we should start abbreviating things so that they will be easier to write down. 
We will use the abbreviations for the base units listed in table 1.1, along with the prefix 
abbreviations listed in table 1.2. For example, kilograms will be abbreviated as kg, while 
milliliters will be abbreviated as mL.

Since the factor-label method is so important in our studies of chemistry, let’s see how 
it works in example 1.1.

EXAMPLE 1.1

A student measures the mass of a rock to be 14,351 grams. What is the rock’s mass 
in kilograms?

First, we use the definition of kilo- to determine the relationship between grams and kilograms:

1 kg = 1,000 g

Then we put our given measurement in fraction form:

14,351 g
1

Then we multiply our measurement by a fraction that contains the relationship noted above, 
making sure to put the 1,000 g in the denominator so that the unit of grams will cancel out:

            14,351 g          1 kg    
   1      

  x   
1,000  g    =  14.351 kg

Given Unit       Conversion Factor    Wanted Unit

So, 14,351 grams is the same as 14.351 kilograms.
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Because we will use it over and over again, you must master this powerful technique. 
Also, you will see toward the end of this module that the factor-label method can become 
extremely complex; therefore, it is very important that you take the time now to answer 

“On Your Own” questions 1.1−1.3. Once you have solved the problems on your own, 
check your answers using the solutions provided at the end of the module. 

CONVERTING BETWEEN 
UNIT SYSTEMS
As you may have guessed, the factor-label 
method can also be used to convert between  
systems of units as well as within systems 
of units. If a measurement is done in the 
English system, the factor-label method can 
be used to convert that measurement to the 
metric system, or vice versa. To be able to 
do this, we must learn the relationships  
between metric and English units, as shown 
in table 1.3. Although these relationships 

are important, we will not use them very often, so you don’t need to memorize them.

TABLE 1.3
Relationships between English and Metric Units

Measurement English/Metric Relationship
Distance 1.00 inch = 2.54 cm

Mass 1.00 slug = 14.59 kg
Volume 1.00 gallon = 3.78 L

We can use this information to form conversion factors for the factor-label method the 
same way we did for the metric system conversions. Study example 1.2 to see how this works.

EXAMPLE 1.2

The length of a tabletop is measured to be 37.8 inches. What is that length in cm?

To solve this problem, we first put the given measurement in its fraction form:

37.8 in
1

We then multiply this fraction by the conversion relationship so that the inches unit cancels:

 37.8  in                 2.54 cm 
1           

x           
1 in           

=      96.012 cm

Given Unit       Conversion Factor    Wanted Unit

So a measurement of 37.8 inches is equivalent to 96.012 cm.

ON YOUR OWN
1.1	 A student measures the mass of a bag 

of sand to be 9,321 g. What is the bag’s 
mass in kg?

1.2	 If a glass contains 0.465 L of water, what 
is the volume of water in mL?

1.3	 On a professional basketball court, the 
distance from the 3-point line to the 
basket is 724.0 cm. What is this distance 
in meters?
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Give yourself a little more practice with 
the factor-label method by answering “On 
Your Own” questions 1.4–1.5.

MORE COMPLEX UNIT CONVERSIONS 
AND PROBLEM SOLVING
Now that we have seen some simple 
applications of the factor-label method, let’s look at more complex problems. For 
example, suppose we measure the volume of a liquid to be 4,523 centiliters but would 
like to convert this measurement into kiloliters. This is a more complicated problem 
because the relationship between cL and kL is not direct. In all of the previous examples, 
we knew the relationship between the unit we had and the unit to which we wanted to 
convert. In this problem, we need to add an extra step to convert from one to the other. 

We would say there is an indirect relationship between the 2 units. We know how 
many cL are in a L and how many L are in a kL, so we can use these 2 relationships to do 
a 2-step conversion. First, we can convert centiliters into liters:

4,523 cL                     0.01 L 
               1                 

x          
 1 cL         

=    45.23 L

Given Unit       Conversion Factor     Wanted Unit

Then we can convert liters into kiloliters:

4,523 L                   1 kL 
                     1            

x       
 1,000 L           

=    0.04523 kL

Given Unit      Conversion Factor     Wanted Unit

We are forced to do this 2-step process because of the indirect relationship between 
the 2 prefix units in the metric system. However, we can always convert between 2 prefix 
units if we first convert to the base unit. To speed up this kind of conversion, we can 
combine these 2 steps into 1 line:

4,523 cL             0.01L             1 kL 
                  1            

x      
 1 cL       

x   
 1,000 L     

=    0.04523 kL

Given Unit           Conversion Factors            Wanted Unit

You will be seeing mathematical equations like this one as we move through the 
subject of chemistry, so it is important for you to understand what’s going on. The first 
fraction in the equation above represents the measurement that we were given. Since there 
isn’t a relationship between the unit we were given and the unit to which we will convert, 
we first convert the given unit to the base unit. This is accomplished with the second 
fraction in the equation. When the first fraction is multiplied by the second fraction, the 
cL unit cancels and is replaced by the L unit. The third fraction then cancels the L unit 
and replaces it with the kL unit, which is the unit we want. This gives us our final answer. 

ON YOUR OWN
1.4	 How many kilograms are in 8.465 slugs?

1.5	 If an object occupies a volume of 6.1236 
liters, how many gallons does it occupy?

M
O

D
 1
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ON YOUR OWN
1.6	 A balloon is blown up so that its volume 

is 1,500 mL. What is its volume in kL?

1.7 	 If the length of a race car track is 2.0 km, 
what is it in cm?

1.8 	How many mg are in 0.01 Mg?

We solved all of the previous problems using the same steps.

1.	 The problem gave a measurement with a unit and asked for a different unit.
2.	 We planned and laid out conversion factors. Think of the sequence of unit 

conversions you will need to get from the initial unit to the final unit for the 
answer. For each change of unit in your plan, you will need a conversion factor. 

3.	 Finally, we set up the factor-label method using the steps we learned earlier.

Try to use the above approach in example 1.3.

EXAMPLE 1.3

The mass of an object is measured to be 0.030 kg. What is the object’s mass in mg?

Given Unit: kg 
Wanted Unit: mg

Plan Conversion Factors: Because the relationship between milligrams and kilograms is 
indirect, we will plan a 2-step conversion. First, we know that:

1 kg = 1,000 g

We also know that:

1 mg = 0.001 g

So we need to multiply our original measurement in fraction form with both of these 
relationships. We must do it in such a way as to cancel out the kg and replace it with g,  
and then cancel out the g and replace it with mg.

Set Up Problem: 

 .030  kg        1,000  g            1 mg  
   1        

x     
1kg        

x    
0.001 g     

=  30,000 mg

Given Unit       Conversion Factors    Wanted Unit

The object’s mass is 0.030 kg, which is the same as 30,000 mg.

The factor-label method is one of 
the most important tools you can learn 
for the study of chemistry (and physics, 
for that matter). Therefore, you must 
become a veritable expert at it. Try your 
hand at “On Your Own” questions 
1.6–1.8 so that you can get some more 
practice.
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We mentioned previously that units can be used in mathematical expressions in the same 
way that numbers can be used. Just as there are rules for adding, subtracting, multiplying, 
and dividing numbers, there are also rules governing those operations when using units. 
You will have to become very adept at using units in mathematical expressions, so let’s 
discuss those rules now.

Adding and Subtracting Units: When adding and subtracting units, the most important 
thing to remember is that the units we are adding or subtracting must be identical. For 
example, we cannot add grams and liters. The result would not make sense physically. 
Since gram is a unit of mass and liter is a unit of volume, there is no way we can add or 
subtract them. We also cannot add or subtract kilograms and grams. Even though both 
units measure mass, we cannot add or subtract them unless the units are identical. If we 
did want to add or subtract them, we would have to convert the kilograms into grams or 
convert the grams into kilograms. It doesn’t matter which way we go, as long as the units 
we add or subtract are identical.

Once we have identical units, we can add and subtract them using the rules of algebra. Since 
2x + 3x = 5x, we know that 2 cm + 3 cm = 5 cm. In the same way, 3.1 g − 2.7 g = 0.4 g. 
When adding or subtracting units, we add or subtract the numbers they are associated 
with and then simply carry the unit along into the answer.

Multiplying and Dividing Units: When multiplying and dividing units, it doesn’t 
matter whether or not the units are identical. Unlike addition and subtraction, we can 
multiply or divide any unit by any other unit. In algebra: 

3x x 4y = 12xy

When multiplying units:

3 kg x 4 mL = 12 kg x mL

Similarly, in algebra:

6x ÷ 2y = 3  x  
                   y

When dividing units: 

6 g ÷ 2 mL = 3 
  g                          ___ 

                          mL

So when multiplying or dividing units, you multiply or divide the numbers and then 
do exactly the same thing to the units. 

Let’s use the rules we’ve just learned to explore a few other things about units. First, 
let’s see what happens when we multiply measurements that have the same units. Suppose 
we wanted to measure the surface area of a rectangular table. From geometry, we know 
that the area of a rectangle is the length times the width. So, let’s suppose we measure the 
length of a table to be 1.1 meters and the width to be 2.0 meters. Its area would be: 

1.1 x 2.0 = 2.2
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What would the units be? In algebra, we would say that: 

1.1x x 2.0x = 2.2x2

Therefore:  

1.1 m x 2.0 m = 2.2 m2

This tells us that m2 (square meter) is a unit for area. 
Let’s take this one step further. Suppose we measure the length, width, and height of a 

small box to be 1.2 cm, 3.1 cm, and 1.4 cm, respectively. What would the volume of the 
box be? From geometry, we know that volume is length times width times height, so the 
volume would be:

1.2 cm x 3.1 cm x 1.4 cm = 5.208 cm3

Therefore, cm3 (usually called cubic centimeters or cc’s) is a unit for volume. If you’ve ever  
listened to doctors or nurses talking about how much liquid to put in a syringe when admin-
istering a shot, they usually use cc’s as the unit. When a doctor tells a nurse, “Give the patient  
4 cc’s of penicillin,” he is telling the nurse to inject a 4-cm3 volume of penicillin into the patient.

Wait a minute. Wasn’t the metric unit for volume the liter? Yes, but another metric 
unit for volume is the cm3. In addition, m3 (cubic meters) and km3 (cubic kilometers) are 
possible units for volume. This is a very important point. Often, several different units 
exist for the same measurement. The units you use will depend, to a large extent, on 
what information you are given in the first place. We’ll see more about this fact later.

Units like cm3 are called derived units because they are derived from math calculations 
with basic units that make up the metric system. Many of the units you will use in 
chemistry are derived units. We will discuss one very important physical quantity with 
derived units in an upcoming section of this module, but first you need to understand 
exactly how to use derived units in mathematical equations.

Let’s suppose we want to take the volume that we previously determined for the box 
and convert it from cubic centimeters to cubic meters. You might think the conversion 
would look something like this:

5.208 cm3       0.01 m 
               1          

x   
 1 cm

This conversion might look correct, but there is a major problem with it. Remember 
what the factor-label method is designed to accomplish. In the end, the old units are 
supposed to cancel out, leaving the new units in their place. The way this conversion is set 
up, the old units do not cancel! When we multiply these 2 fractions together, the cm in the 
denominator does not cancel out the cm3 in the numerator. When multiplying fractions, 
the numerator and denominator must be identical for them both to cancel. The cm in the 
denominator above must be replaced with cm3. 

How is this done? It’s quite simple. Do you remember the math equation for volume? 
It is length times width times height. You have to provide a conversion factor for each 
unit of the length, width, and height.

5.208 cm3       0.01 m       0.01 m       0.01 m 
               1          

x   
 1 cm     

x   
 1 cm     

x   
 1 cm
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 1We can shorten this setup by using an exponent:

 5.208 cm3         0.01 m   3

                 1          
x (  

 1 cm  )
Inside the parentheses, the m becomes m3, the cm becomes cm3, the 0.01 becomes 

0.000001, and the 1 stays as 1:

5.208 cm3        0.000001 m3

                         1          
x       

1 cm3            
=    0.000005208 m3

  Given Unit    Conversion Factor        Wanted Unit

Now since both the numerator and denominator have a unit of cm3, that unit cancels 
and is replaced with the m3. So a volume of 5.208 cm3 is equivalent to a volume of 
0.000005208 m3.

Since cubic meters, cubic centimeters, and the like are measurements of volume, you 
might have already guessed that there must be a relationship between these units and the 
other volume units we discussed earlier. In fact, 1 cm3 is the same thing as 1 mL. This is a 
very important relationship and is something you will have to know before you can finish 
this module. Commit it to memory now:

1 cubic centimeter is the same as 1 milliliter (1 cm3 = 1 mL).

Let’s combine this fact with the mathematics we just learned and perform a very 
complicated unit conversion. If you can understand example 1.4 and successfully 
complete “On Your Own” questions 1.9–1.11, then you have mastered unit conversion. 
If things are still a bit shaky for you, don’t worry. There are plenty of practice problems at 
the end of this module to help you practice your unit conversion skills.

EXAMPLE 1.4

The length, width, and height of a small box are measured to be 1.1 in, 3.2 in, and 4.6 
in, respectively. What is the box’s volume in liters?

Given Unit: in (length)  
Wanted Unit: L (volume)

Plan Conversion Factors: First, determine volume. To solve this problem, we first use the 
geometric equation for the volume of a box:

V = l x w x h

Set Up Problem:

V = 1.1 in x 3.2 in x 4.6 in = 16.192 in3

Plan Conversion Factors: Second, convert to liters. Now that we know the volume, we just 
have to convert from in3 to L. This is a little more difficult than it sounds, however. Since there is 
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no direct relationship between in3 and L, we must go through a series of conversions to get to 
the desired unit. First, we can convert our unit from the English system to the metric system by 
using the following relationship:

1 in = 2.54 cm

To do this, we will have to cube the fraction we multiply by so that we have cm3 and in3.

Set Up Problem: 

        16.192 in3        2.54 cm  3        16.192 in3        16.387 cm3

                 1        
x   (  

1 in    )  
=

        1        
x (   

1 in3      ) 
=  265.338 cm3

Now that we have the metric volume unit, we can use the fact that a cm3 is the same as a mL:

265.338 cm3 = 265.338 mL

Now we can convert from mL to L:

Set Up Problem:

265.338 mL      0.001 L 
              1           

x    
 1 mL    

=  0.265338 L

The volume, then, is 0.265338 L.

Alternative approach: First, convert inches to centimeters, then get the volume in cubic 
centimeters, then convert to milliliters, and finally convert to liters. 

Set Up Problem:

We convert initial inch units to cm:

1.1 in       2.54 cm
   1       

x     
1 in     

=  2.794 cm
         

3.2 in       2.54 cm
   1       

x     
1 in     

=  8.128 cm

4.6 in       2.54 cm
   1       

x     
1 in     

=  11.684 cm

We calculate volume in cm3:

V = 2.794 cm x 8.128 cm x 11.684 cm = 265.338 cm3

Finally, we convert cm3 to L (remember that cm3 is equal to mL):

265.338 mL      0.001 L 
                 1           

x    
 1 mL    

=  0.265338 L

You will see that this is the same answer as above. We simply changed the order of how we did it.  
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 1MAKING MEASUREMENTS
Now that we’ve learned about measurement 
units, we need to spend a little time learning 
how to make measurements. After all, being 
able to manipulate units in mathematical 
equations isn’t going to help us unless 
we can make measurements with those 
units to begin with. To learn how to make 
measurements properly, we have to know 
how to use measuring instruments. Let’s 
start with a simple measuring instrument: 
the ruler. 

Suppose we wanted to measure the length of this purple line with an English ruler. We 
would make the measurement something like this: 

  
1	 2	 3	 4inches

Illustration by Megan Whitaker

First, notice that we did not start the measurement at the beginning of the ruler. 
Instead, we lined up the ribbon with the first inch mark because it is slightly more 
accurate. It is very difficult to line up the edge of a ruler with the edge of the object you 
are measuring. This is especially true when the ruler is old and the edges are worn. So, the 
first rule for measuring with a ruler is to start at 1, not 0.

How would you read this measurement? First, you need to see what the scale on the 
ruler is. If you count the number of dashes between 1 inch and 2 inches, you will find 
that there are 15 of them. Every dash is worth one-sixteenth of an inch because 15 dashes 
break up the area between 1 inch and 2 inches into 16 equal regions. 

Now that we know the scale is marked off in sixteenths of an inch, we can see that the 
ribbon is a little bigger than 1 5/16 of an inch. Is that the best we can do? Of course not! 
Because the edge of the ribbon falls between 5/16 (10/32) and 6/16 (12/32) of an inch, we can 
estimate that it is approximately 11/32. The proper length of the ribbon is 1 11/32 inches. 
Generally, chemists do not like fractions in their final measurements, so we will convert 
11/32 into its decimal form to get a measurement of 1.34375 inches. Later on we will see 
that this measurement has far too many digits in it, but for now we will assume that it is 
okay.

Let’s measure that same ribbon with a metric ruler:

 

1	 2	 3	 4	 5	 6	 7	 8	 9 	 10	 11
centimeters

Illustration by Megan Whitaker

Now what measurement do we get? There are 9 small dashes between each cm mark; 
therefore, the scale of this ruler is one-tenth of a cm, or 0.1 cm. This is typical of metric 

ON YOUR OWN
1.9	 Should you be impressed if someone says  

she can hold her breath for 0.00555 hours?  
You must first convert this to seconds  
to answer. (HINT: 1 hour = 60 minutes 
and 1 minute = 60 seconds.)

1.10 	How many cm3 are in 0.0091 kL?

1.11 	The area of a room is 32 m2. What is  
the area of the room in mm2?

M
O

D
 1
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rulers. They are almost always marked off in tenths since all the prefixes in the metric 
system are multiples of 10. If you think about it, 1 mm = 0.1 cm, so you could also 
say that each small dash is 1 mm. The ribbon is between 3.4 cm and 3.5 cm long. (The 
printing of your specific page could alter your measurement slightly.) Using our method of 
approximating between the dashes, we would say that the ribbon is 3.41 cm long.

How do we deal with the part of the line between the dashes? Here is a rule you 
will need to follow with any scientific instrument. You will always estimate one digit 
beyond what the instrument is marked. We can say 3.41 cm is the length of the line. Our 
instrument is marked off in 0.1 cm, so we will always report the measurement to the 
nearest 0.01 cm. What if you measure 3.43 cm and someone else measures 3.41 cm? 
There is nothing wrong with this because the last digit of any measurement is an estimate.

Whenever you are using a measuring device marked with a scale, be sure to use it the 
way we have used the rulers here. First, determine what the dashes on the scale mean. Then, 
try to estimate between the dashes if the object you are measuring does not exactly line up 
with a dash. That gives you as accurate a measurement as possible. You should always strive 
to read the scale to the next decimal place if possible. For example, on a metric ruler, the 
scale is marked off in 0.1 cm, so you should read the ruler to 0.01 cm, as discussed above.

One physical quantity that chemists measure frequently is volume because they spend 
a great deal of time mixing liquids. When chemists measure volume, one of the most 
useful tools is the graduated cylinder. This device looks a lot like a rain gauge. It is a 
hollow cylinder with markings on it. These markings, called graduations, measure the 
volume of liquid that is poured into the cylinder. 

In the last experiment you will perform in this module, you will use a graduated 
cylinder (or a suitable substitute) to measure volume; so you need to know how to do this. 
When liquid is poured into a cylinder, the liquid tends to creep up the edges of the cylinder. 
This is because there are attractive forces between the liquid and the cylinder. Therefore, 
liquid poured into a graduated cylinder does not have a flat surface. Instead, it looks 
something like figure 1.2:

FIGURE 1.2
The Meniscus

Illustration by Megan Whitaker

magnified view of  
the meniscus

meniscus
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 1The curved surface of the yellow liquid is called the meniscus (muh nis' kus). To 
determine the volume of the liquid in any graduated cylinder, you must read the level of 
the liquid from the bottom of the meniscus. On the graduated cylinder in figure 1.2, there 
are 4 dashes between each marking of 10 mL, splitting the distance between the 10 mL 
marks into 5 divisions. This means that each dash must be worth 2 mL. If you look at the 
bottom of the meniscus in the figure, you will see that it is between 28 and 30 mL. Is the 
volume 29 mL then? No, not quite.

In the 2 examples we considered before, it was hard to guess how far between the 
dashes the object’s edge was because the dashes were very close together. In this example, 
the dashes are farther apart, so we can be a bit more precise in our final answer. For 
the volume to be 29 mL, the bottom of the meniscus would have to be exactly halfway 
between 28 and 30. Clearly, the meniscus is much closer to 28 than to 30. So the volume 
is really between 28 and 29, and probably a little closer to 28. We would estimate that 
the proper reading is 28.3 mL. It could be as low as 28.1 or as high as 28.5, so 28.3 is a 
good compromise. Remember, you need to try to read the scale to the next decimal place. 
Since the scale is marked off in increments of 2 mL, you must try to read the answer to 
0.1 mL. Experiment 1.3 will give you some practice at this kind of estimation.

ACCURACY, PRECISION, AND SIGNIFICANT FIGURES
Now that we’ve learned a bit about taking measurements, we need to discuss when 
measurements are good and when they are not. In chemistry, there is always some 
uncertainty in the value of a measurement. We can describe the measurement in 2 ways—
its accuracy and its precision. Even though these words are used interchangeably in daily 
life, there’s an important distinction between them.

Accuracy—An indication of how close a measurement is to the true value. 
Precision—An indication of the scale on the measuring device that was used.

In other words, the more correct a measurement is, the more accurate it is. The 
smaller the scale on the measuring instrument, the more precise the measurement.

So let’s look again at the ribbon measurement as an example. Suppose we used a 
ruler with a scale marked off in 0.1 cm and measured a length of 3.45 cm. What does 
that number mean? It means that the length of the ribbon, as far as we could tell, was 
somewhere between 3.445 and 3.455 cm long. We could not determine the length of the 
ribbon any better than that because our ruler was not precise enough to do any better.

On the other hand, if we found a ruler with a scale marked in increments of 0.01 cm, 
we could get a more precise measurement. For example, we could get a measurement of 
3.448 cm because estimating between the dashes gives us one more decimal place. Since 
the ruler is marked off in hundredths, we can get a measurement out to the thousandths 
place. That extra digit in the thousandths place nails down the length better. It would 
be impossible to obtain so precise a measurement from the ruler we used in the example 
above, so the new ruler provides a more precise measurement. These examples show that 
the precision of our measurements depends completely on the measuring devices we use. 
The smaller the scale on the instrument, the more precise our measurement will be. 

However, suppose we used the second ruler improperly. Maybe we read the scale 
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incorrectly or didn’t line up the ribbon to the ruler very well and got a measurement of 
3.118 cm. Even though this measurement is more precise than the one we made with the 
first ruler, it is significantly less accurate because it is way off of the correct value of 3.448 cm.  
The accuracy of our measurement depends on how carefully and correctly we use the 
measuring device. In other words, a measurement’s precision depends upon the instrument, 
whereas a measurement’s accuracy depends upon the person doing the measurement.

Since a measurement’s precision depends on the instrument used, the only way to improve 
precision is to get a better, more precise instrument. However, there are other ways to improve 
accuracy. First, make sure you understand the proper methods of using each instrument. 
Second, practice making measurements, which will help your skill and your accuracy. 

The most practical way to improve your accuracy in measurement is to make your 
measurement several times and average the results. This averages out all the little 
differences that can occur between measurements, even while using the same instrument. 
An even better way of assuring accuracy is to have several different people make the 
measurements and average all their answers together. The more individual measurements 
are made, the more accurate the average of them will be.

Let’s illustrate this whole idea of accuracy and precision in another way. Suppose you were 
throwing darts at a dart board. Figure 1.3 shows 3 possible outcomes that we will discuss.

FIGURE 1.3
Accuracy and Precision

Illustration by Megan Whitaker

  Precise, but not accurate              Accurate, but not precise              Both accurate and precise
 
The first target on the left has all the darts clumped together, but they are way off the 

bull’s-eye. If we made several measurements with a precise device but used it wrongly 
every time or the device had a flaw, it would give us numerous measurements that were 
very close to one another but far from the true value. This example shows a lot of 
precision, but not much accuracy. 

The middle target has the darts surrounding the bull’s-eye, but they are far from one 
another. If we used a measuring device that is not very precise but used it correctly, it would 
give us similar results. This may be because we had a hard time estimating between the 
marks on the scale of the instrument. This example shows accuracy, but not much precision. 

The last target on the right has all darts clumped together, and they are on the bull’s-
eye. This is an example of measurements that are both accurate and precise. They are 
accurate because they average out to the correct value of the bull’s-eye, and they are 
precise because they are very close to one another, indicating that a precise measuring 
device was used. This example is what every chemist desires when making measurements. 

Since accuracy and precision are very important, we need to know how to evaluate 
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 1the accuracy and precision of our measurements. The way to determine the accuracy of 
a measurement is to compare it to the correct value. If you have no idea what the correct 
value is, determining your measurement’s accuracy is difficult. It is not impossible, but we 
will not spend time in this course on this topic. 

Determining the precision of a measurement is quite easy. To determine the precision 
of a measurement and an instrument, you merely need to look at its significant figures. 
But what is a significant figure? It is a digit that is read from an instrument. That purple 
line was 3.41 cm long. All of those digits came from the ruler, so that measurement has 
3 significant figures. The volume of liquid in the graduated cylinder was 28.3 mL. Again, 
all of those digits came from the instrument, so they are significant figures. A significant 
figure is a measured digit! 

If 2 instruments measure the same thing, the one which gives a significant figure in 
the smallest decimal place is the more precise instrument. For example, 2.545 cm is more 
precise than 2.54 cm because 2.545 cm has more significant figures. There are 4 rules you 
need to remember to determine the number of significant figures:

1.	 All nonzero digits are significant.
2.	 All zeros in front of the first 1–9 digit are not significant.
3.	 All zeros between 2 significant figures are significant.
4.	 All zeros at the end of a number and to the right of the decimal point  

are significant.

TABLE 1.4
Examples of Significant Figure Rules

Number Example Number of  
Significant Figures

Nonzero digits 9,341 4
Zeros in front of first 1–9 digit 0.000564 3

Zero between 2 significant figures 120.043 6

Zero at end of number and  
to right of decimal point

510.0  
510

4 
2

Counting significant figures is very important in science and in our ability to 
understand measurements, so you must have a firm grasp on this concept. Read through 
example 1.5 and follow the logic. After that, try “On Your Own” question 1.12.

EXAMPLE 1.5

Count the significant figures in each of the following numbers:

a. 3.234        b. 6.016        c. 105.340        d. 0.00450010        e. 2,330

(a)	 Since every digit is nonzero, every digit is a significant figure (first rule). This means there 
are 4 significant figures in this number.

(b)	Three of the digits are nonzeros and therefore are significant figures (first rule). The 0 is 
also significant because it is between 2 significant figures (second rule). So there are 4 
significant figures in the number. 
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(c)	 Four of the digits are nonzeros and therefore are significant figures (first rule). The 0 
between the 1 and 5 is significant because it’s between 2 significant figures (second rule). 
The last 0 is also significant because it is at the end of the number and to the right of the 
decimal point (third rule). The answer is there are 6 significant figures in the number.

(d)	The 3 nonzero digits are all significant figures, as are the zeros between the 5 and 1. The 0 
at the end is also a significant figure. However, the first 3 zeros are not significant because 
they are not between 2 significant figures and they are not at the end of the number 
to the right of the decimal. They are important, but they are not measured. There are 6 
significant figures in the number.

(e)	 The 3 nonzero digits are significant figures. The zero is not significant because it is before, not 
at the end of, the number to the right of the decimal. There are 3 significant figures in the 
number.

As we have seen, the precision of 
our instrument determines the number 
of significant figures we can report in a 
measurement. In our graduated cylinder 
example, we decided that we could 
reasonably approximate our measurement 
to somewhere between 28 and 29 mL. If 
we can do that, then we can report our 

answer to the nearest tenth of a mL, giving us a 3-significant-figure answer of 28.3 mL. If, 
instead, our graduated cylinder had been marked off in tenths of a mL, we could probably 
approximate the measurement to somewhere between 28.2 and 28.3 mL, allowing us to 
have a 4-significant-figure answer like 28.26 mL.

In the example which used an English ruler, we said that our final answer, 1.34375 
inches, had too many digits in it. Now hopefully you can see why. According to this 
number, our ruler was precise enough to measure distance of one-hundred-thousandth of 
an inch! That’s far too much precision. Most English rulers are, at best, precise to 0.01 
inches. Therefore, the proper length of the ribbon that you should report is 1.34 in.

Suppose we had another ribbon to measure:

 

1	 2	 3	 4	 5	 6	 7	 8	 9 	 10	 11
centimeters

Illustration by Megan Whitaker

How would we report its measurement? Would we say that this ribbon is 3 cm long? 
Actually, that measurement is not quite right. The ribbon does seem to end right on the 4 
cm line, so there is no need to do any approximations here. Why, then, is 3 cm a wrong 
answer for the length of the ribbon?

The problem with reporting the length of the ribbon as 3 cm is that we are not being 
as precise as we can be. Since the ruler’s scale is marked off in 0.1 cm, we can safely report 
our answers to the hundredths of a cm. If the ribbon’s edge had fallen between 2 dashes, 

ON YOUR OWN
1.12	 How many significant figures are in the 

following measurements?

	 a. 3.0220 cm	 d. 61.054 kg 
b. 0.0060 m	 e. 300,000 mm 
c. 1.00450 L		
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 1we could have approximated as we did above. Therefore, the precision of the ruler is to the 
hundredths place. Therefore, if the object’s edge falls right on one of the dashes, do not 
throw away precision. Report this length as 3.00 cm. This tells someone who reads the 
measurement that the ribbon’s length was measured to a precision in the hundredths of a cm. 

If you report the length as 3 cm, that means the ribbon could be as short as 2.5 cm 
or as long as 3.4 cm. Both of those measurements round to 3. But the ruler we used was 
much more precise. It determined the length of the ribbon to be 3.00 cm. So the ribbon 
is somewhere between 2.995 and 3.004 cm long. Keeping all of the significant figures 
that you can is a very important part of doing chemistry experiments. You will get some 
practice at this in experiment 1.3.

Reporting the precision of a measurement is just as important as reporting the number 
itself. Why? Let’s suppose that the No-Weight Cookie Co. just produced a diet cookie 
that they claim has only 5 calories per cookie. To confirm this claim, researchers did 
several careful experiments and found that, in fact, there were 5.4 calories per cookie. 
Does this result mean that the No-Weight Cookie Co. lied about the number of calories 
in its cookies? No. When the company reported that there are 5 calories per cookie, 
the precision of their claim indicated that there could be anywhere from 4.5 to 5.4 
calories per cookie. The researchers’ finding was more precise than the company’s claim; 
nevertheless, the company’s claim was accurate.

SCIENTIFIC NOTATION
Since reporting the precision of a measurement is so important, we need a notation 
system that allows us to do this no matter what number is involved. As numbers get 
very large, it becomes more difficult to report their precision properly. For example, 
suppose we measured the distance between 2 cities as 100.0 km. According to our rules 
of precision, reporting 100.0 km as the distance means that our measuring device was 
marked off in units of 1 km, and we estimated between the marks to come up with 100.0 
km. However, suppose our measurement wasn’t that precise. Suppose the instrument we 
used could determine the distance only to within 10 km? How could we write down a 
distance of 100 km and indicate that the precision was only to within 10 km? 

The answer to this question lies in the technique of scientific notation. In scientific 
notation, we write numbers so that no matter how large or how small they are, they 
always include a decimal point. Remember, a number can be represented in many different 
ways. The number 4, for example, could be written as 2 × 2 or 4 × 1 or simply 4. Each one 
of these is an appropriate representation of the number 4. In scientific notation, we always 
represent a number as a something times a power of 10. For example, 50 could be written 
in scientific notation as 5 × 10. The number 150 could be written as 1.5 × 100 or 15 × 10.

Do you see why this helps us in writing down the precision of our original 
measurement? Instead of writing the distance as 100 km, we could write it as 1 x 100 
or 1.0 x 100 or 1.00 x 100. How does this help? According to our rules of significant 
figures, the 0 in 1.0 is significant because it is at the end of the number and to the right 
of the decimal. By writing down our measurement as 1.0 x 100, we indicate that the 0 
was measured and that the measurement is precise to within 10 km. There is no way to 
do that with normal decimal notation because neither of the zeros in 100 is significant. 
Scientific notation, then, gives us a way to make zeros significant if they need to be. If our 
measurement of 100 km was precise to within 1 km, we could indicate that by reporting 
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the measurement as 1.00 x 100 km. Since both zeros in 1.00 are significant, this tells us 
that both zeros were measured, so our precision is within 1 km.

Since numbers that we deal with in chemistry can be very big or very small, we use 
one piece of mathematical shorthand in scientific notation. Recall from algebra that 100 
is the same as 102. We will use this shorthand to make the numbers easier to write down. 
Scientific notation always has a number with a decimal point right after the first digit 
times a 10 raised to some power. 

One other advantage of using scientific notation is that it simplifies the job of 
recording very large or very small numbers, making mistakes in computations less likely. 
For example, there are roughly 20,000,000,000,000,000,000,000 particles in each 
breath of air that we take. Numbers like that are very common in chemistry. In scientific 
notation, the number would be 2 x 1022. That’s much easier to write down!

How did do we know to raise the 10 to the 22nd power? To get the decimal point right 
after the 2, we would have to move it to the left 22 digits, which is equivalent to multiplying 
by 1022. When putting a large number into scientific notation, all we need to do is count the 
number of spaces the decimal point needs to move and then raise the 10 to that power.  

20,000,000,000,000,000,000,000.0= 2 x 1022

Chemistry also deals with very small numbers. For example, one of the things we 
will discuss in great detail in several upcoming modules is a particle called a proton. 
The proton has a mass of about 0.00000000000000000000000000167 kg. This 
number is very cumbersome to write down, so we will use scientific notation to make 
our job a little easier. In scientific notation, the proton’s mass is 1.67 x 10−27 kg. Why 
raise the 10 to the −27th power? When numbers are raised to the negative power, they 
are smaller than 1. So when we multiply a number by 10 raised to a negative power, 
we shift the decimal place the other way. To get the decimal point to be right after the 
1, we have to move it 27 places. Since we moved it to the right 27 places, we multiply 
it by 10−27. 

0.00000000000000000000000000167= 1.67 x 10-27

You will need to follow 2 basic rules for scientific notation in this course.

1.	 Place only 1 digit (not a 0) in front of the decimal point.
2.	 Only significant figures go in front of the multiplication sign.

See how this works by following example 1.6, and then make sure you understand this 
technique by completing “On Your Own” questions 1.13–1.14.
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EXAMPLE 1.6

Convert the following numbers into scientific notation:
a. 20,300        b. 3,151,367        c. 234,000        d. 0.000002340        e. 0.000875

(a)	 The decimal place must be moved to the left by 4 digits to get it next to the 2. Since 
we are dealing with a big number, we have to multiply by a 10 raised to a positive power. 
Therefore, the answer is 2.03 x 104. Since the last 2 zeros to the right of the 3 are not 
significant as the number is written, we must drop them in our answer.  All zeros are 
significant in 2.0300 x 104.

(b)	The decimal place must be moved to the left 6 places and the number is big, so the 
answer is 3.151367 x 106. 

(c)	 The decimal place must be moved to the left 5 places, and since it is a big number, the 
answer is 2.34 x 105. The last 3 zeros were dropped because as written, they are not 
significant.

(d)	The decimal must be moved 6 places to the right. Since this is a small number, we are 
dealing with a negative exponent, so the answer is 2.340 x 10-6. In this case, the final 0 
cannot be dropped because, based on our rules of significant figures, a 0 at the end of a 
number and to the right of the decimal point is significant.

(e) The decimal point must be moved 4 places to the right. Since it is a small number, the 
answer is 8.75 x 10-4.

Convert the following numbers from scientific notation back into decimal form.
(a) 3.45 x 10-5        (b) 2.3410 x 107        (c) 1.89 x 10-9        (d) 3.0 x 10

(a)	 Since the 10 is raised to a negative power, the decimal point must be moved to make it 
small. The power of –5 tells us that we move it 5 spaces, so the answer is 0.0000345.

(b	 Since the power of 10 is positive, we must move the decimal point to make the number 
bigger. The power of 7 tells us we must move it 7 places, so the answer is 23,410,000. 
Note that we cannot indicate that the 0 after the 1 is significant in this notation. It is 
clearly significant in the original number, so it is impossible to properly represent the 
precision of this number in decimal form.

(c)	 We must move the decimal point 9 places and make the number smaller, so the answer is 
0.00000000189.

(d)	Since the exponent is not listed, we assume it’s 1. That means that we move the decimal 
point 1 place so that the number gets bigger, so the answer is 30. Once again, there is no 
way to indicate that the 0 is significant, as it is in the original number.
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USING SIGNIFICANT FIGURES IN 
MATHEMATICAL PROBLEMS
Now that we have the ability to write 
down any measurement with its proper 
precision, there is only one more topic on 
significant figures that we need to discuss. 
We need to know how to use our concepts 
of significant figures when we work 
mathematical problems. Suppose we had 
2 measurements and wanted to add them 
together. Since each measurement has its 
own precision, the final answer would also 

have a certain precision. How do we know the precision of our answer? 
For example, suppose we measured the total length of a knife to be 25.46 cm.  

Later, someone else measured the length of the knife handle with a less precise ruler and 
got 7.8 cm. If we wanted to determine the length of the knife’s blade, either we could 
measure it, or we could say that the blade’s length was the total length of the knife 
minus the length of the handle, or 25.46 cm − 7.8 cm. If we do the subtraction, we get 
17.66 cm. This answer is too precise because the knife handle was measured with a less 
precise ruler. The answer is limited to the least precise instrument, so the proper answer 
is 17.7 cm. 

To add, subtract, multiply, or divide measurements, we will use 2 rules about using 
significant figures in mathematical equations. You will be using these rules over and over 
again throughout this course, so you will be expected to know them:

1.	 Adding and Subtracting with Significant Figures: When adding and subtracting 
measurements, round your answer so that it has the same precision as the least 
precise measurement in the calculation.

2.	 Multiplying and Dividing with Significant Figures: When multiplying and 
dividing measurements, round the answer so that it has the same number of 
significant figures as the measurement with the fewest significant figures.

Example 1.7 shows how these rules work.

EXAMPLE 1.7

A student measures the mass of a jar that is filled with sand and finds it to be 
546.2075 kg.  A note on the jar says, “When empty, this jar has a mass of 87.61 kg.” 
What is the mass of the sand in the jar?  

Since 546.2075 kg is the mass of both the jar and the sand, and since 87.61 kg is the mass of the 
jar alone, the mass of the sand must be the difference between the 2:

ON YOUR OWN
1.13	 Convert the following numbers from 

decimal form to scientific notation.

	 a.  26,089,000	 c.  0.00009870 
b.  12,000,000,003	 d.  0.980

1.14	 Convert the following numbers from 
scientific notation to decimal form.

	 a.  3.456 x 1014	 c.  3.45 x 10-5 
b.  1.2341 x 103	 d.  3.10 x 10-1
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 1      546.2075 kg 
     − 87.61     kg 
      458.5975 kg 

However, since the precision of the jar’s mass only goes out to the hundredths place, that’s the 
best we can do in our final answer. Therefore, the mass of the sand is 458.60 kg. Note that this 
number has more significant figures than 87.61. That doesn’t matter because in addition and 
subtraction, we do not count significant figures; we look only at precision.

A woman runs 3.012 miles in 0.430 hours. What is her average speed?

We can find her average speed by dividing the distance traveled by the time:

Speed = 3.012 miles ÷ 0.430 hour = 7.004651163  

The 3.012 miles has 4 significant figures, while 0.430 hours has 3.  Therefore, our final answer 
must have 3 significant figures, making it 7.00 miles/hour

Now that we have learned these rules, you will be expected to use them in all further 
mathematical operations! Whether you are working an “On Your Own” problem, a 
practice problem, a test problem, or an experiment, you will use these rules. In the 
examples and answers for all previous problems, these rules have not been followed, but 
they will be from now on. By the time you finish the next couple of modules, keeping 
track of significant figures and precision should be second nature to you. 

There is one more point that you must understand about significant figures before you 
get some practice using the rules. When making unit conversions, you might be tempted 
to round everything to 1 significant figure because of the conversion relationships. For 
example, when you convert 121 g into kg, you use the following equation:

 121  g            1 kg  
 1        

x  
1,000  g 

Note that the 1 kg, the 1 in the denominator of the first fraction, and 1,000 g all look 
like they have only 1 significant figure. You might be tempted to round your answer to 
1 significant figure. However, that would not be correct. The reason is simple: These 3 
numbers all come from definitions. They are infinitely precise. The 1 kg is really 1.000... 
kg, and the 1,000 g is really 1,000.000... g because exactly 1 kilogram is defined to be 
exactly 1,000 g. In the same way, the 1 on the bottom of the first fraction is really 1.000… 
because it is an integer. The only number in this equation that has a limited number of 
significant figures is the 121 g (it is a measurement), so the answer is 0.121 kg.

In general, then, the prefixes used in the metric system as well as the integers used in fractions 
are infinitely precise and have an infinite number of significant figures. As a result, we ignore 
them when determining the significant figures in a problem. This is a very important rule:

The definitions of the prefixes in the metric system and the integers used in fractions are 
not considered when determining the significant figures in the answer.

Get some practice making measurements, using them in mathematical equations, and 
keeping track of significant figures by performing experiment 1.3.



30

MEASUREMENT,  UNITS,  AND THE SCIENTIFIC METHOD

E X P E R I M E N T  1 . 3

PURPOSE :  To compare conversions to measurements.

MATERIALS :
•	 Book (not oversized)
•	 Metric and English rulers
•	 Safety goggles

QUESTION :  How do measurements compare to conversions?

HYPOTHESIS :  Write a hypothesis about how close you expect your conversions to be 
to measurements.

PROCEDURE : 
1.	 Lay the book on a table and measure its length in inches. Read the ruler as shown 

in the measurement section above, estimating any answer that falls between the 
markings on the scale. Next, convert the fraction to a decimal (as we did in the 
measurement section above) and round it to the hundredths place because that’s the 
precision of an English ruler. 

2.	 Measure the width of the book in the same way.
3.	 Now that you have the length and width measured, multiply them together to get the 

surface area of the book. Since you are multiplying inches by inches, your area unit 
should be in2. Remember to count the significant figures in each of the measurements 
and round your final answer so that it has the same number of significant figures as 
the measurement with the least number of significant figures.

4.	 Use the relationship given in table 1.3 to convert the length measurement into cm. Do 
the same thing to the width measurement, making sure to keep the proper number of 
significant figures. Note that the relationship between inches and centimeters is exact. 
The 2.54 cm should not be taken into account when considering the significant figures 
because 1 inch is exactly 2.54 cm. 

5.	 Use the metric ruler to measure the length and width of the book in centimeters. 
Once again, do it as shown in the measurements section above. If the scale of the 
ruler is marked off in 0.1 cm, then your length and width measurements should be 
written to the hundredths of a centimeter. Compare these answers to the length 
and width you calculated by converting from inches. They should be nearly the same. 
If they are different by only a small percentage, there is no problem. However, if 
they differ by more than a small percentage, recheck your measurements and your 
conversions.

6.	 Multiply the length and width measurements you took with the metric ruler to 
calculate the surface area of the book in cm2. Use the relationship between inches 
and centimeters to convert your answer into in2. Remember, since you are using a 
derived unit, the conversion is more complicated. You might want to review example 1.4.
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 17.	 Now compare the converted value for the surface area to the one you calculated in 
step 3 using your English measurements. Once again, they should be equal or close to 
equal. If not, you have either measured wrongly or made a mistake in your conversion.

8.	 Clean up and return everything to the proper place.

CONCLUSION :  Write something about how well you made your measurements.

MEASURING TEMPERATURE
In chemistry, we will be measuring and making calculations with temperature, so we 
need to know what units are used in the measurement. The temperature unit that you 
are probably most familiar with is Fahrenheit (abbreviated as °F). We hear this unit used 
often by weather reporters talking about tomorrow’s weather and how warm or cold 
it will be. Although this is a very common temperature unit, it is not used by chemists. 
Instead, chemists use one of 2 other temperature units: Celsius (sel' see us; abbreviated 
°C) or Kelvin (kel' vuhn; abbreviated K). First we need to see how these units are defined, 
and then we will see how they relate to Fahrenheit and why chemists use them.

When we measure temperature, we are measuring how much the liquid within the 
thermometer is expanding. Therefore, we must find a way to relate that measurement to a 
unit which means temperature. We do this in the following way:

1.	 Immerse a thermometer in a mixture of ice and water.
2.	 Make a mark where we see the liquid in the thermometer and assign a value 

to that mark. In the Celsius temperature scale, we call it exactly 0°C. In the 
Fahrenheit scale, we give that mark a value of exactly 32°F.

3.	 Immerse the thermometer in a pot of boiling water.
4.	 Make a mark where we see the liquid in the thermometer and assign it a value 

of exactly 100°Celsius or exactly 212°Fahrenheit.
5.	 Divide the distance between the 2 marks into equal divisions. Then we have a 

temperature scale.

This method for defining a temperature scale is illustrated in figure 1.4.

FIGURE 1.4
Making a Celsius Thermometer

Illustration by Megan Whitaker

Thermometer  
in ice water

Thermometer  
in boiling water

Thermometer after the  
marks have been made
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This process of using certain physical measurements to define the scale of a measuring 
device is called calibration. This particular calibration makes use of a surprising fact in 
chemistry:

If ice and water are thoroughly mixed, the temperature of the mixture will stay the same 
(0.0°C or 32.0°F), regardless of the amount of ice or water present. 

This might sound rather surprising, but it is true. Even though you might think that a 
little water with a lot of ice is colder than a lot of water with a little ice, they are actually 
the same temperature! Equally surprising is this fact:

 Boiling water is always at the same temperature (100.0°C or 212.0°F at standard 
atmospheric pressure) whether it is boiling rapidly or hardly boiling at all.

Now that we know how the Celsius temperature unit is defined, we can learn how it 
relates to the Fahrenheit unit. It makes sense that Fahrenheit and Celsius relate to one 
another since they both measure the same thing: temperature. They are related by a very 
simple equation:

 5 
°C = 

  9  
(°F - 32)        Equation 1.1

In this equation, °C represents the temperature in degrees Celsius, and °F stands for 
the temperature in degrees Fahrenheit. So if you must use a Fahrenheit thermometer in 
your experiments, you can use this equation to convert your measurements into Celsius. 
Please note one very important thing about this equation: The 5, 9, and 32 are all exact. 
Therefore, you need not consider their significant figures. They have infinite precision and 
an infinite number of significant figures. The only significant figures you must consider are 
those of the original measurement. Using this equation, we will report our answer using 
the multiplication rule even though there is a subtraction in the equation. Example 1.8 
will help show you how this is done. 

EXAMPLE 1.8

A student uses a Fahrenheit thermometer to do a chemistry experiment but then 
must convert his answer to Celsius. If the temperature reading was 50.0°F, what is 
the temperature in Celsius? 

To solve this one, we simply use equation 1.1:

  5 
°C =  9  

(50.0 - 32)   

°C = 10.0



ON YOUR OWN
1.15	 Normal body temperature is 98.6°F.  

What is this temperature in Celsius?

1.16	 Rubbing alcohol boils at 180.5°C.  
What is the boiling temperature of  
water in Fahrenheit?
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 1There are 3 significant figures in the original measurement. Since the other numbers in this 
equation are exact, the answer must have 3 significant figures. Therefore, the answer is 10.0°C.

We usually say that room temperature is about 25°C. What is this temperature in 
Fahrenheit?

To solve this one, we must first rearrange equation 1.1 using algebra. Once we do this, we get 
the following equation:

 9 °F = 
  5  

(°C) + 32   

 9 °F = 
  5  

(25) + 32   

°F = 77

The presence of only 2 significant figures in the original number means only 2 significant figures 
in the end; therefore, the temperature is 77°F.

Try “On Your Own” questions 1.15–1.16 to 
see whether or not you fully understand this type 
of conversion.

What about the other unit mentioned earlier? 
The Kelvin temperature unit is a special unit 
that we will use quite a bit in later modules. It is 
special because we can never reach a temperature 
of 0 Kelvin or lower, for reasons we will see in 
a later module. This fact makes the Kelvin temperature scale different from most others. 
After all, anything colder than ice water has a negative temperature in Celsius units. This 
means that temperatures less than 0 are quite common in the Celsius scale. Although not 
quite as common, it is possible to reach temperatures less than 0 in the Fahrenheit scale 
as well. It is impossible for anything in nature to reach 0 Kelvin or below. Since we can 
never get to or go below 0 Kelvin, the Kelvin temperature scale is often called an absolute 
temperature scale.

Once we have a temperature in units of degrees Celsius, converting it to Kelvin is 
simple. All we do is add 273.15 to the measurement. In mathematical terms, we would 
use this equation:

K = °C + 273.15        Equation 1.2

K is the temperature in units of Kelvin, and °C is the temperature in units of 
Celsius. In this equation, the 273.15 is not exact. Its precision plays a role. Note that 
since this equation involves adding, we use the rules of addition and subtraction when 
determining the significant figures involved. Those rules are different from the ones  
for multiplication and division, so be aware of that. Example 1.9 will show you how  
to use this equation.
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EXAMPLE 1.9

What is the boiling temperature of water in Kelvin?

This conversion is a snap. We just realize that water boils at 100.0°C. If we put that temperature 
into equation 1.2, we get this:

K = 100.0 + 273.15 = 373.15

The original temperature goes out to the tenths place, while 273.15 goes out to the hundredths 
place. The rules for significant figures in adding tell us that the answer must have the same 
precision as the least precise number in the equation. Therefore, our final answer is 373.2 K.

The lowest temperature that has ever been recorded in the United States of America 
is -80.0°F. What is this temperature in Kelvin?

Since the only way we can get to Kelvin is by adding 273.15 to the temperature in Celsius, we 
must first convert °F into °C:

   5 °C = 
 9  

(-80.0 - 32)   

°C = -62.2

Now that we have the answer in °C, we can easily convert to Kelvin:

K = -62.2 + 273.15 = 210.95

Our final answer is 211.0 K. Our rules for adding tell us that the precision must be kept to 
the tenths place because that is the same precision as the least precise number in the equation. 
That’s why our final answer goes out to the tenths place. So you see, even very, very cold 
temperatures in the Celsius and Fahrenheit temperature scales are still rather large numbers in 
the Kelvin temperature scale!

Now cement your knowledge of 
temperature conversions with “On Your 
Own” question 1.17. 

THE NATURE OF A SCIENTIFIC LAW
One way to approach chemistry or any 
other science is to look around you and 

try to think of logical explanations for what you see. You would certainly observe, for 
instance, that different substances have different forms and appearances. For example, 
some substances are gases, some are liquids, and some are solids. Some are hard and shiny, 
but others are soft and dull. You would also observe that different substances behave 
differently. Iron rusts, but gold does not; copper conducts electricity, but sulfur doesn’t. 
How can you explain these and a vast number of other observations? 

ON YOUR OWN
1.17	 What is the Fahrenheit equivalent of  

0.00 Kelvin? (Use 3 significant figures  
for this measurement.)
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 1God made our world far too complex for us to understand by looking and thinking 
alone. We need to ask specific questions and conduct experiments to find answers. 
Scientists develop laws through experimentation and observation. After experimenting 
on or observing some facet of nature, they formulate a hypothesis to explain their 
observations. A hypothesis is no more than an educated guess that attempts to explain 
some aspect of the world around us. For example, when early scientists observed 
rotting meat, they always saw maggots crawling around on it. This led them to form the 
hypothesis that maggots are created from rotting meat. 

Once a hypothesis has been formulated, scientists test it with more rigorous 
experiments. For example, after forming the hypothesis that maggots are created from 
rotting meat, early scientists did experiments to make sure that the maggots were not 
coming from something else. They would put rotting meat on a shelf high in the air to 
make sure that no maggot could crawl up to it. Even when the rotting meat was put high 
in the air, maggots still appeared on it. To early scientists, such experiments confirmed 
their hypothesis. Although there was no way for maggots to crawl up to the rotting meat, 
they did indeed appear on it. Many similar experiments convinced early scientists that 
their original hypothesis was correct.

Once a hypothesis is confirmed by more rigorous experimentation, it is considered 
a theory. After numerous experiments, the theory may be considered a scientific law. A 
scientific law is really nothing more than an educated guess that has been confirmed 
over and over again by experimentation. The problem with putting too much faith in 
a scientific law is that the experiments that established it might be flawed, making the 
scientific law itself flawed.

science and creation
We study science to learn more about creation and, ultimately, the Creator. God is the one who holds 
it all in His hands and uses it for His glory. Early scientists who were experimenting with rotting meat 
and maggots called their theory the theory of spontaneous generation. As the centuries passed, many 
more experiments were done to test the theory. Those experiments seemed to support the idea that 
life, such as maggots, could be created from nonlife, such as rotting meat. All of the experiments done to 
confirm this theory, however, were flawed. For example, Francesco Redi, an Italian physician, showed that 
if the rotting meat was completely isolated from the outside world, no maggots would appear; however, 
microscopic organisms did. French scientist Louis Pasteur eventually performed careful experiments that 
overturned the theory of spontaneous generation. His work showed that even microscopic organisms 
could not arise from nonlife but came to the meat by dust particles that blew in the wind.

The point of this story is to illustrate that when you read about scientific results, you must keep in 
mind that scientific theories are not laws of nature and can never be absolutely proven. There is always 
a chance that a new experiment might give results that can’t be explained by a present theory. All a 
theory can do is provide the best explanation available at the time. If new experiments uncover results 
that present theories can’t explain, the theories will have to be modified or perhaps even replaced. 
Science experiments are a good way to try to understand the nature of God’s creation, but they are 
not absolute truth. Remember that.



36

MEASUREMENT,  UNITS,  AND THE SCIENTIFIC METHOD

EXPERIMENTATION AND THE SCIENTIFIC METHOD
As we go about studying chemistry, you will conduct experiments to help you understand 
the concepts being presented in this course. You should use the scientific method to 
document the results of your experiments. The scientific method includes techniques 
for investigating, acquiring new knowledge, or correcting and  
integrating previous knowledge. 

1.	 Purpose: What is your goal? What do you want to answer? Example: I would 
like to know what phase water is at room temperature. 

2.	 Hypothesis/Prediction: What do you think will happen in this experiment? 
Example: I believe that water is liquid at room temperature. 

3.	 Experiment: Test the hypothesis with systematic observations, measurements, 
and laboratory techniques. 

4.	 Analysis: Determine what the results of the experiment show and decide  
on the next actions to take. 

5.	 Conclusion: Describe what the results of the experiment show and the next 
actions to take. 

	
As we do experiments, we will use this experimental method to document our findings. 
Now that you have read this module and answered the “On Your Own” questions, it 

is time for you to shore up your new skills and knowledge with the practice problems and 
review questions at the end of this module. As you go through them, check your answers 
with the solutions provided and be sure you understand any mistakes you made. If you 
need more practice problems, you can find them in appendix B. Once you are confident in 
your abilities, take the test. If you do not score at least 70% on the test, then you should 
probably review this module before you proceed to the next one. 

salt and light
Bishop Robert Grosseteste (1175–1253) was an English 
statesman, philosopher, theologian, and scientist. He was one of 
the first scientists to establish a framework for what would later 
become the scientific method. Besides being a great scientist, 
Grosseteste was a strong Christian. He taught that the purpose of 
inquiry was not to come up with great inventions, but instead to 
learn the reasons behind the facts. In other words, he wanted to 
explain why things happened the way they did. That’s the essence of 
science. He said that “just as the light of the sun irradiates the organ 
of vision and things visible, enabling the former to see and the latter 
to be seen, so too the irradiation of a spiritual light brings the mind 
into relation with that which is intelligible” (Stevenson 1899, 52). 

Stained glass window by William Morris (to the 
designs of Burne-Jones) [Photo: public domain]
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 1SUMMARY OF KEY EQUATIONS AND TABLES IN MODULE 1

Equation 1.1:    °C =  5 				   Converting °F to °C
		           

 
        9  

(°F - 32)   

Equation 1.2: 	 K = °C + 273.15 		  Converting °C to K

Table 1.1: Physical Quantities and Their Base Units

Table 1.2: Common Prefixes Used in the Metric System

Table 1.3: Relationships between English and Metric Units

Table 1.4: Examples of Significant Figure Rules
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ANSWERS TO THE “ON YOUR OWN” QUESTIONS  

	  9,321  g            1 kg   1.1
            1          

x   
1,000  g  

=   9.321 kg

	 0.465 L          1 mL 1.2
            1        

x  
1,000 L  

=   465 mL

	 724.0 cm         0.01 m1.3
            1          

x   
1 cm      

= 7.240 m

	 8.465 sl         14.59 kg 1.4
            1        

x        
1 sl        

=   123.5 kg

	 6.1236 L         1 gal  1.5
            1          

x  
3.78 L   

=   1.62 gal

	 1,500 mL        0.001 L           1 kL   1.6
            1           

x     
1 mL     

x   
1,000 L

   =   0.0015 kL

	   2 km        1,000 m         1 cm  1.7
           1       

x     
1 km      

x 
  0.01  m 

  =   200,000 cm

	  .01 Mg        1,000,000 g          1 mg   1.8
            1        

x       
1 Mg         

x 
  0.001  g  

   =   10,000,000 mg

	  0.00555 hr       60 min       60 sec 1.9
               1          

x     
1 hr    

x 
  1 min

   =   19.98 sec

	  
	 That is not a long time to hold one’s breath. So we would not be impressed.

           0.0091 kL    1,000 L       1 mL 1.10
           1         

x    
1 kL    

x 
0.001 L 

 =  9,100 mL = 9,100 cm3 (mL and cm3 equivalent)

1.11	 The relationship between m and mm is easy:

1 mm = 0.001 m



39

MODULE 1
M

O
D

 1	 To set up the conversion, we start with:

32 m2       1 mm  
  1       

x  
0.001 m

This expression does not cancel m2. There is an m2 on the top of the first fraction 
and only an m on the bottom of the second fraction. To cancel m2 (which we must 
do to get the answer), we have to square the conversion fraction:

32 m2         1 mm     2

  1     
x ( 

0.001 m)
Then we get:

32 m2          1 mm2 
   1      

x 
0.000001 m2   

=  32,000,000 mm2

1.12 	 (a) All 3 nonzero digits are significant figures, as are both zeros. One 0 is between 
2 significant figures, and the other is at the end of the number to the right of the 
decimal. There are 5 significant figures.

(b) The first 3 zeros are not significant because they are not between 2 significant 
figures. The 6 is a significant figure, as is the last 0 because it is at the end of the 
number to the right of the decimal. So there are 2 significant figures.

(c) All digits are significant figures here. The first 2 zeros are between significant 
figures, and the last 0 is at the end of the number to the right of the decimal. 
Therefore, there are 6 significant figures.

(d) All digits are significant figures. The 0 is between 2 significant figures. There 
are 5 significant figures.

(e) All the zeros are not significant in this number. There is 1 significant figure.

1.13 	 (a) 2.6089 x 107	 (b) 1.2000000003 x 1010 
(c) 9.870 x 10−5	 (d) 9.80 x 10−1

1.14 	 (a) 345,600,000,000,000 	 (b) 1,234.1        
(c) 0.0000345        	 (d) 0.310

1.15 	 To solve this one, we simply need to use equation 1.1:

 5 
°C = 

  9  
(°F - 32)

 5 
°C = 

  9  
(98.6 - 32)



40

MEASUREMENT,  UNITS,  AND THE SCIENTIFIC METHOD

40

    °C = 37.0

	 Our measurement starts with 3 significant figures, and the other numbers in  
the equation are exact, so we must end up with 3 significant figures. The answer  
is 37.0°C.

1.16 	 This one requires that we use algebra to rearrange equation 1.1 so that we can 
solve for °F:

 9 °F =  
5  

(°C) + 32

   9 °F =  
5  

(180.5) + 32

           °F = 356.9

	 Since 180.5 has 4 significant figures and everything else in the equation is exact, 
our answer is 356.9°F.

1.17	 The only way we can convert to Fahrenheit is if we have a temperature in Celsius. 
Before we can get the answer, we must first convert 0.00 K to degrees Celsius by 
rearranging equation 1.2:

°C = K − 273.15

 °C = 0.00 − 273.15 = −273.15

	 Since we are subtracting, we look at precision. The original measurement goes out 
to the hundredths place, as does 273.15. Therefore, our answer should go out to 
the hundredths place. Now we can convert to Fahrenheit:

 9 °F =   
5  

(°C) + 32

   9 °F =   
5  

(-273.15) + 32

           °F = -459.67

	 Since 273.15 is the only number in the equation that is not exact, the answer must 
have the same number of significant figures. The answer is −459.67°F.
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 1STUDY GUIDE FOR MODULE 1

REVIEW QUESTIONS

1. 	 Which of the following contains no matter?
	 a.  A baseball
	 b.  A balloon full of air
	 c.  Heat
	 d.  A light ray

2. 	 List the base metric units used to measure length, mass, time, and volume.

3.	 In the metric system, what does the prefix milli- mean?

4. 	 All conversion factors, when in the form of a fraction, must equal __________.

5. 	 Which has more liquid: a glass holding 0.05 kL or a glass holding 12,000 mL?

6. 	 How long is the bar in the picture below?

1       2       3       4        5
cm

 
Illustration by Megan Whitaker 

7. 	 Two students measure the mass of an object that is known to be 50.0 grams. 
The first student measures the mass to be 49.8123 grams. The second measures 
the mass to be 50.1 grams. Which student was more precise? Which student was 
more accurate?

8. 	 Explain what a significant figure is.

9. 	 How many significant figures are in the following numbers?
	 a. 120350        b. 10.020        c. 0.000000012        d. 7.20 x 102

10.	 A student measures the mass of object A to be 50.3 grams and measures the 
mass of object B to be 200.24 grams. She then reports the combined mass to be 
251 grams. Is this student correct? Why or why not?
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 11.	 What would be the units on the following calculations? You do not have to do 
the math since this question only wants to know the units. 
a. 8 cm + 2 cm =  
b. 4 g ÷ 2 mL =

12.	 Which answer for question 11 will be a derived unit?
13.	 What are the 2 basic rules for using scientific notation?

14.	 Which is colder: 50.0 grams of water at 0.00°C or 50.0 g of water at 32.00°F?
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 1PRACTICE PROBLEMS
Be sure to use the proper number of significant figures in all of your answers!

1. 	 Convert 2.4 mL into L.

2.	 Convert 69.00 km into m.

3.	 Convert 0.091 kg into cg.

4.	 If an object has a volume of 69.2 mL, how many kL of space does it occupy?

5.	 A box is measured to be 23 cm by 45 cm by 38 cm. What is its volume in cubic 
meters?

 
6.	 A nurse injects 71.0 cc of medicine into a patient. How many liters is that?

7.	 Convert the following decimal numbers into scientific notation:
	 a.  12.45000
	 b.  3,040,000
	 c.  6,100.500 
	 d.  0.001234

8.	 Convert the following numbers back into decimal:
	 a.  6 x 109

	 b.  3.0450 x 10-3

	 c.  1.56 x 1021

	 d.  4.50000 x 10-7

9.	 Convert 85.6°C into Fahrenheit.

10.	 The temperature of the moon during its day is 396 K. What is that in Celsius? 
In Fahrenheit?

11.	 The average low temperature of International Falls, MN, in January is −7.0°F. 
What is that in °C?


