Life of Sred"
 Statistics
 ©ீxpanded ©ீdition

Stanley F. Schmidt, Ph.D.

PD

Polka Dot Publishing

Statistics

Decisions! Decisions! Decisions! Do you attend Harvard University or KITTENS University? Do you marry this person or not? Does your pizza company continue the television advertising campaign that features the "Pizza for People Who Like to Canoodle" slogan?

Success in life is 90% making the right decisions in the first place. And only 10% carrying out those decisions.

People with good decision-making skills are rare. They are also the most valuable persons in any business, army, or orchestra. These CEOs, generals, and conductors all have the same job: they take massive amounts of data and boil them down to yes-or-no decisions.
\checkmark Shall we sell all the stock we own? (It's September 1929.)
\checkmark Shall we launch the invasion today? (It's June 6, 1944.)
\checkmark Shall we send our orchestra on a worldwide tour this month? (It's early December 1941.)

And where there are numbers involved, statistics is an important aid in making good decisions. At its best, statistics is a way of melting down a heap of numerical data into a simple yes or no. It's a way of getting rid of numbers!

If you really hate to see big piles of numbers, you and statistics were made for each other.

OA OVAte to Students

0ne morning in the life of Fred. A Saturday just after his sixth birthday. In his everyday life Fred will run into the need for every kind of statistics. Each time we do a little statistics, we see how it helps him get through his morning.

HOW MUCH STATISTICS IS COVERED IN THIS BOOK?

We start at the beginning with simple descriptive statistics (averages, standard deviation, etc.) and then do some probability, including conditional probability with Bayes' theorem.

Next comes inferential statistics -the heart of statistics -in which we study a zillion* different procedures. We describe each in detail and tell you when and where each test is appropriate. You get plenty of worked-out examples for each test.

All the popular tests such as the Normal Distribution and the Chisquared test are included. Many advanced tests such as the KolmogorovSmirnov test and the Two-Factor ANOVA for multiple observations per cell are covered. When the Chi-squared test won't work because the sample sizes are too small, we turn to Fisher's Exact test. Most beginning statistics books don't include that test.

We have one test that no other statistics book mentions -at least not until future authors copy it out of this book. It deals with a Small SAMPLE FROM A BINOMIAL DISTRIBUTION. Suppose, for example, a new species of fish is discovered in the ocean and of the first ten caught, three had red fins. What is the number of red-finned fish you might expect if you caught 10,000? (Answer: 95\% of the time, you would expect between 1093 and 6096.) This question would stump most statistics teachers (who don't have a copy of this book).

After the descriptive and inferential statistics, we spend the last hour or so of Fred's morning working with regression equations including nonlinear curve fitting and logistic regression.

This book has much more material than is normally covered in a beginning university statistics course.

[^0]
HOW THEORETICAL IS THIS BOOK?

Life is practical. This is a book that will teach you how to do statistics-lots of it. Even if you are going to get a Ph.D. in statistics and are dying to go through tons of theory and proofs, your first logical step should be to learn how to do the various tests. Then, in a later course, the proofs would be appropriate. In beginning algebra, for example, you were first told that a negative number times a negative number gives a positive answer. Later, you might have seen the proof.

In this book you learn how to perform the Kruskal-Wallis test for three or more independent samples, but we're not going to fill up the pages with a proof.

There are two exceptions. The first is a little three-line proof of Bayes' theorem, which is so cute that I couldn't resist including it. And the second is the underpinnings of the small sample from a binomial distribution test that I mentioned on the previous page. Since no other book has this test, I placed this material in its own separate little chapter (Chapter $51 / 2$) and laid out the reasoning to show why this test works. This little chapter is the only place in the book in which there is any calculus. And even there, the calculus is very basic. It deals with the area under a curve described by a polynomial. If you go directly from Chapter 5 to Chapter 6 and bypass Chapter $51 / 2$, you will be protected from all calculus.

In doing their proofs, some books go nuts with subscripts, primes, "hats," and Greek letters. They wind up with expressions like $\hat{y}_{\mathrm{i}, \mathrm{j}}^{\prime}+\varepsilon$, which certainly don't help anyone's digestion. Those things are kept to a minimum in Life of Fred: Statistics Expanded Edition. (yे is read "y-hat.")

WHAT BACKGROUND DO I NEED?

It would be nice to have a little algebra so that x^{2}, absolute values, and square roots don't mystify you. But that's about it. I can't think of anywhere in the book where you'll need to do any algebra word problems.*

We'll use the greater than sign ($>$) and plus-or-minus (\pm).

[^1]See if these all make sense to you:

$7^{2}=49$	
	$\|-3\|=3$
$64>29$	
7 ± 2 means 5 or 9.	
	Using your calculator $\sqrt{3}$ gives 1.7320508.

If so, you are ready.

DO I NEED A COMPUTER?

No.

DO I NEED A GRAPHING CALCULATOR?

No. All you need is a handheld calculator that has keys like sin, cos, and log. Those calculators don't cost that much. Certainly under $\$ 20$. (I have seen them under $\$ 8$.) In a couple of years they will probably be included free in cereal boxes.

ANY SPECIAL SUGGESTIONS BEFORE I START CHAPTER 1?

Yes. I have a couple of ideas.
First, in each chapter there are Qour Furn to Play sections. These have representative problems along with completely worked-out solutions. Please solve these problems before you glance at the solutions. Just reading the problems and eyeballing the solutions is a real temptation for some readers, but unless you're smarter than Einstein, you won't learn much doing that.

At the end of each chapter are six sets of exercises which I call Cities. In this Expanded Edition, all the answers are supplied.

Second, I need to know if you are in a real hurry.

If that's the case, then don't start by turning to the first page of Chapter 1, or to the Table of Contents, or to the Index.

Instead, turn to the Emergency Statistics Guide which begins on page 353. The Emergency Statistics Guide will tell you:
(1) what test to use,
(2) where to find an explanation of the test as it occurred in Fred's life,
(3) where it's listed in the Field Guide, and
(4) what table to use.

The Emergency Statistics Guide will move you from baffled to brilliant in twelve seconds flat.

of OVate to Teachers

Sometimes life suddenly gets a lot easier. Life of Fred: Statistics Expanded Edition might be the best teaching assistant that you've ever had. For your students this book will be much more than just a source of homework. Open this book at random and you will see why many of your students will actually read this textbook. (Gasp! Shock!) That will make your job significantly easier.

This book has lots and lots of statistics. More than enough for most classroom courses. How many other beginning statistics books teach all of:

Kolmogorov-Smirnov
Fisher's Exact Test χ^{2} with Yates correction Smith-Satterthwaite Test Two-Factor ANOVA with many observations per cell Agresti-Coull confidence intervals
along with all of the more familiar topics (finding the mean average, finding the standard deviation, drawing a histogram, etc.) that every textbook has? With all these topics in this book, you have plenty of flexibility to include just those items that you most enjoy teaching. Just take a peek at the Table of Contents on page 15 .

Your students will appreciate the fact that you have chosen a textbook that:
. . . is fun to read,
. . . costs about one-third of other beginning statistics books,
. . . has a Field Guide, starting on page 420, which brings each test into sharp focus,
. . . includes an Emergency Statistics Guide, starting on page 353, which (almost) instantly can direct you from any problem to the right test to use.

This is not one of those textbooks that tells you to "Turn to Example 18-6" and doesn't tell you what page it's on. Or Table 18-6. Or Problem 18-6. Or Equation 18-6. Or Figure 18-6. It can be maddening to have to turn back through 20 pages looking for that example/table/ problem/equation/figure. That won't happen in this book. We use page numbers.

Some Ideas on Teaching with LOF: Statistics

1. Each chapter has several Gour Turnto Play sections with representative problems and their complete solutions. Many teachers find this the ideal place to begin their discussions.
2. At the end of each chapter are six sets of problems (called Cities).

Each City may take your students 20-40 minutes to work through. The answers are all supplied, but not the complete solutions. With the answers given, students will know whether they have done the problem correctly. Without the solutions supplied in the text, you will be able to tell whether the students have actually worked the problem.

Why Cities? This makes it easier on you if all you have to say is, "Do San Francisco for homework" rather than the old, "Do every third problem on page 231."
3. It is expected that each student will work through all the Gour Turnto Play sections and all of the Cities problems.
4. Ask your students to read the material the night before you cover it in class. The nature of this book makes that kind of assignment possible. That will make your teaching of the material much more pleasant.
5. The heart of the book-at least for me-is "The Art of the Sample," which is Chapter $41 / 2$ that begins on page 133 . Students who master all 46 statistical tests in this book will have a powerful arsenal at their disposal which can be used to spread truth or to deceive. The Ten Rules of Fair Play as described in Chapter $41 / 2$ set out some ethical guidelines for the use of that arsenal of tests. This can promote some very interesting classroom discussions. Some students love to find the "gray areas" in any set of rules they're expected to follow. Rule \#1, for example, prohibits data mining. A discussion might revolve around, "Is it really data mining if you happen to notice that many politicians seem to cheat on their income taxes and then you do a survey on that topic?"

Contents

Chapter 1 Descriptive Statistics 21
frequency distributions scatter diagrams

 averages-mean, median, and mode

 linear regression

 populations vs. samples

 histograms

 range

 percentiles, deciles, quintiles, quartiles

 variance

 sigma notation

 standard deviation for populations and for samples

 distributions-skewed, platykurtic, leptokurtic, bimodal
 Chapter 2 Probability 59
outcomes sample space events-independent, complements, mutually exclusive Venn diagrams
Chapter 3 Conditional Probability 77
$\mathcal{P}(\mathrm{A} \mid \mathrm{B})$ notation definition of conditional probability Bayes' theorem and its proof generalized Bayes' theorem
Chapter $3 ½$ Looking Forward to the Next Four Chapters. 97
the Future-zero samples the Past-one sample the Present-two samples the Present-three or more samples
Chapter 4 The Future-Zero Samples. 101
Poisson distributionsefactorialcontinuous vs. discrete variablesexponential distributions-three formspermutations and combinationsBernoulli variablesbinomial distributionshypergeometric distributionsmultinomial distributions
extended hypergeometric distributions normal distributions-Gaussian distributions normal curves to approximate binomial distributions
Chapter $41 / 2$ The Art of the Sample133null hypothesis- H_{0}the problem of induction-Hume's problemthe problem of small samplestype I and type II errorslevels of significanceThe Ten Rules of Fair Playdata mining, cherry picking, data snoopingpilot samplesalternative hypothesesone-tail vs. two-tail propositionsdealing with sensitive questions in a surveydealing with bad luck in surveyssimple random surveyssystematic samplescluster samplingstratified samplesoutliersstatistical significance vs. actual significance13 alternatives to saying " H_{0} is tenable."
Chapter 5 The Past-One Sample. 155
why no one knows what time it isNormal Distributions-large samples, but a small part of thepopulation
z-scoresdetermining sample sizeconfidence intervalsCentral Limit Theorempoint estimates
Wald confidence intervals vs. Agresti-Coull confidenceintervals
finite population correction factorsNormal Distributions-large samples that are a large part ofthe populationStudent's t-distribution
Lilliefors test for normality
standardizing data
cumulative normal frequency
Wilcoxan Signed Ranks test-the Median test
uniform distributions
symmetric distributions
Sign test
power of a test
data-nominal, ordinal, interval, ratio
parametric vs. nonparametric statistics
Sign test for nominal data
Kolmogorov-Smirnov goodness-of-fit test
for uniform distributions
for normal distributions
Chi-squared test
for goodness-of-fit test
the Lie Detector test
is-the-sample-too-variable test
sequences-random, cyclical, trends
Runs test
Chapter 51/2 Secrets of the Binomial Proportion. 217starting with a small sample of a Bernoulli variablewe determine the confidence interval for π, the proportionof "good" items in the underlying populationa small history of the problemMonte Carlo methodthe journal article (from The Journal of Fredometrika),which describes a new approach to the problem
Chapter 6 The Present-Two Samples 227paired samplesTwo Paired Samples $\left(\mu_{1}-\mu_{2}\right)$ testWilcoxon Signed Ranks test for two paired samplesSigns test for two paired samplesSigns test for paired samples of Hot \& Cold
Two Proportions with 2 samples in 2 categories
independent samples
Two Large Independent Samples test
Two Independent Samples when σ_{1} and σ_{2} are known
F-distribution test
Two Small Independent Samples test where the populations are normal and the standard deviations are roughly equal
Two Small Independent Samples test where the populations are roughly normal but the standard deviations are quite different from each other (a.k.a. the Smith-Satterthwaite test)
Mann-Whitney test
Chi-squared test for 2 samples in many categories contingency tables one sample with two variables
Chi-squared test with Yates correction for 2 samples in 2 categories
Fisher's Exact test for 2 samples in 2 categories
Chapter 7 The Present-Many Samples 283One-Way ANOVA test for independent samplesweighted averagesPost-test for One-Way ANOVA for independent samplesOne-Way ANOVA for matched samples (blocked samples)Post-test for One-W ay ANOVA for matched samplesTwo-Factor ANOVA with one observation per cellPost-test for Two-Factor ANOVA
ANOVA tables
Two-Factor ANOVA with several observations per cellKruskal-W allis testPost-test for Kruskal-W allis
Chi-squared test for nominal data, three or more samplescorrelation vs. causation
Chapter 7½ Emergency Statistics Guide. 353
Chapter 8 Finding Regression Equations 369linear regressionprediction intervalsPearson Product Moment Correlation Coefficient (r)coefficient of determinationmultiple regressionnormal equationscoefficient of multiple determination (R^{2})adjusted coefficient of multiple determinationdesign variables, dummy variablessaturated models
multicollinearity method
step down method
nonlinear regression
logarithmic curves
reciprocal curves
power curves
exponential curves
parabolic curves
two independent variables with possible interaction
logistic regression

Future-The population is known and you want to know what the sample will look like. You start with zero samples.

Hypergeometric Distribution
Extended Hypergeometric Distribution
Binomial Distribution
Multinomial Distribution
Poisson Distribution
Exponential Distribution
Normal Distribution
Past-The sample is known and you want to know what the population was that gave this sample. You start with one sample.

Normal Distribution- $\mathrm{n}>30$ and the sample is small compared with the population.
Normal Distribution- $\mathrm{n}>30$ and the sample is large compared with the population.
Student's t-distribution
Binomial Distribution (large sample, $\mathrm{n}>30$)
Binomial Distribution (small sample, $\mathrm{n} \leq 30$)
Kolmogorov-Smirnov goodness-of-fit test
Lilliefors test
Wilcoxon Signed Ranks test
Sign test-Does the population have that median?
Sign test for Nominal Data
Chi-squared test (goodness of fit)
Chi-squared test (Lie Detector)
Chi-squared test (Is the population too variable?)
Runs test

Present-You start with two samples and want to know how do they compare with each other.

Two Paired Samples ($\mu_{1}-\mu_{2}$)
Wilcoxon Signed Ranks test
Sign test for two paired samples
Sign test for two paired samples of nominal data.
Two Proportions in two categories.
Two Large Independent Samples, $\mathrm{n} \geq 30$
Two Independent Samples (σ_{1} and σ_{2} known)
F-distribution test
Two Small Independent Samples, roughly equal standard deviations
Two Small Independent Samples (Smith-Satterthwaite) with very different standard deviations.
Mann-Whitney test (a.k.a. Wilcoxon Rank-Sum test) Chi-squared test (χ^{2}), two samples of nominal data in multiple categories.

One Sample with Two Variables
Chi-squared test $\left(\chi^{2}\right)$ - Yates correction
Fisher's Exact test

Present-You start with three or more samples and want to know how $d o$ they compare with each other.

One-Way ANOVA (independent samples)
Post-test for One-W ay ANOVA (independent samples)
One-Way ANOVA (matched samples)
Post-test for One-W ay ANOVA (matched samples)
Two-Factor ANOVA (one observation per cell)
Post-test for Two-Factor ANOVA (one observation per cell)
Two-Factor ANOVA (multiple observations per cell)
Kruskal-W allis test
Post-test for Kruskal-W allis
Chi-squared (χ^{2}), three samples of nominal data

Tables. 490	
Table A	Binomial Coefficients
Table B	Kolmogorov-Smirnov (one sample)
Table C	Standard Normal Curve (area from 0 to z)
Table D	Standard Normal Curve (area from $-\infty$ to z)
Table E	Standard Normal Curve (area from -z to z)
Table F	Student's t-Distribution
Table G	Lilliefors
Table H	Wilcoxon Signed Ranks
Table I	Sign test
Table J	Chi-Squared (χ^{2})
Table K	Runs test
Table L	Mann-Whitney (Wilcoxon Rank-Sum)
Table M	Fisher's Exact test
Table N	F-Distribution
Table O	Kruskal-Wallis test
Table P	Binomial Proportion Intervals

Index. 571

Chapter One
 Descriptive Stacaisicics

Tink! Fred's eyes popped open. He had just heard one of the sweetest sounds. He looked at his watch. 4:13 A.m. With his mouth open, he listened in the dark. Tink! $Y_{\in S}$, he thought to himself it's happened. Tink!

Drops of water were falling from the ceiling. Fred threw off his bedcovers and emerged from under his desk. He looked at the pot on his desktop and saw three drops of water. Pink! Make that four drops.

His watch clicked over to 4:14 A.M. and he smiled as six more drops fell into the pot. It's a little early to telephone Alexander Fred thought but it won't hurt if I email him. Fred rolled up his three-foot sleeping bag and put it in the closet. He turned on the computer, changed out of his pajamas, turned off his nightlight, and looked out the window. From the window in his office/home he could look out over the university campus. For the first time in months, the sky was inky black and filled with stars. It was a welcome change from what he called the "dodo bird" sky of Kansas in winter.

From September through May, the cloud cover always reminded Fred of the soft, gray feathers of that extinct bird.

He opened the window and felt a warm breeze. So much to be grateful for. I teach at a wonderful university. I have my health. I have wonderful friends like Alexander and Betty. Fred uttered the prayer that God most likes to hear ("Thank you") and then turned to his computer that was in the final stages of booting up. He put three phone books on a chair and hopped on top of them. When you're only six years old and 36 inches tall, you need to make those kinds of adjustments in order to sit at a bigpeople's desk.

On a clipboard he wrote out a little frequency distribution showing the data he had collected so far:

But that looked much too "numbers" for Fred's taste. He liked to keep things simple. Instead of

time	no. of drops
$4: 13$	4
$4: 14$	6

Chapler One Descripive slacisisics

4:13 A.m., Fred wrote " 1 " to stand for the first minute of spring, and " 2 " for the second minute.

His frequency distribution looked much nicer now:

time	no. of drops
1	4
2	6

He stared at the computer screen.
Three operating systems had been loaded, the anti-virus program and the anti-spam programs were activated, and the screen colors were being adjusted to match the university colors, and now the Internet service provider was being dialed.

Fred had a very new machine (it was a gift from his students), but the university had very old phone lines. "ISP IS Not responding" appeared on his screen. "Error 397 The number is being redialed."

Fred went back to looking at the pot. It was 4:18 A.m. and during that minute Fred counted 16 drops coming from the ceiling into his pot. His screen flashed, "Local number is unavailable. The Nevada number is being dialed." Fred went back to counting. Twenty drops came in the next minute. "The Nevada number is busy. Uruguay is being dialed."

Fred went back to his clipboard and expanded his frequency distribution:

To pass the time waiting for his computer, he drew a little graph.

A bunch of dots on a graph (where paired observations are plotted) is called a scatter diagram.)
Fred's Scatter Diagram
82

$\bigodot_{\mathrm{p}}^{\mathrm{p}}$uick! No time to wade through a table of contents or an index. Do you use the Kolmogorov-Smirnov one-sample test or do you perform a Chi-squared test? Should you resort to the Wilcoxon Signed Ranks test? Or two-factor ANOVA?

Just answer these questions and follow the arrows. You'll learn exactly which statistics procedure you'll need.

From the previous page.
You have a population and you want to know what samples from this population will look like.

We call this the Future.
You are starting with zero samples.

Are you dealing with "hits" scattered randomly throughout an interval (of time, distance, etc.) or
is it more like drawing colored marbles out of a jar?

Poisson Distribution

Explanation page 102
Field Guide page 431

Exponential

Distribution
Explanation page 107
Field Guide page 432

From the previous page.
You are drawing colored marbles out of a jar.

From page 353.

A single sample is known.
You want to describe the population from which it came.
We call this the Past.

Sndex

adjusted coefficient of multiple determination 381
Agresti-Coull confidence interval 163
ANOVA table. 308
antilog 396
average
mean 31
median. 39
mode. 37
bad luck. 145
Bayes’ theorem. 87
generalized. 91
proof. 88
bell-shaped curve 49
Bernoulli variable
$111,217,400$
bimodal 49
binomial distribution 112,429
for proportions. 162
small sample 217
Central Limit Theorem 160
Chi-squared test
combining categories 199
goodness-of-fit test197, 447
Is the sample too variable?203, 449
Lie Detector. 201, 448
three or more samples 327, 488
two samples in manycategories. 258, 464
Yates correction for 2 samplesin 2 categories. . 266, 467
cluster sampling 147
coefficient of determination 376
coefficient of multiple determination. 381
coincidences 68
combinations 110, 286
complement of an event 66
correlation does not imply causation 338
conditional probability. 82
confidence level 137
contingency table. 258
continuous variables 106
correlation coefficient. 373
cumulative normal frequency 177
cyclical sequences. 203
data
four types 186
interval. 186
nominal 186
ordinal. 186
ratio 186
data mining 139
decile. 41
design variable 385
dichotomous variable. 385
discrete variables 106
dummy variable 385
e. 103
Emergency Statistics Guide353
event in a sample space. 66
complement 63
independent events. 61, 80

Ondex

intersection of two events68mutually exclusive 67
union of two events. 67
exponential distribution. 107, 432
second form. 108
third form. 108
extended hypergeometric distribution 117
F-distribution test 247, 459
factorial. 104
Field Guide 420
finite population correction factor167
firecracker factory. 29
Fisher, R. A 173
Fisher's Exact test. 267, 468
frequency distribution. 21
Gaussian distribution 125, 433
Gosset, William Sealey 173
histogram 32, 179
Hosenaufschlag Macht Geld 202
Hume's problem 135
hypergeometric distribution113, 427
extended. 117, 428
induction. 135, 153
inferential statistics. 97
interval data. 186
Journal of Fredometrika 223
Kingie 43
Kolmogorov-Smirnov goodness- of-fit test. 190, 439
for a normal distribution 194
for a uniform distribution190
Kruskal-Wallis test 319, 484
post test. 321, 487
Leibnitz Lane. 34
leptokurtic. 49
level of significance of a test 137
Lilliefors test for normality. 174, 442
linear regression 27, 373
$\ln \mathrm{x}$. 390
logistic regression 399
Luther's Table Talk. 490
Mann-Whitney test 256, 462
maximum likelihood estimators 419
mean average. 31
median average. 39
mesokurtic 49
MLE 419
mode average. 37
Monte Carlo method. 220
mu (μ). 31
multicollinearity. 385
multinomial distribution.
115, 430
multiple coefficient of regression381
multiple regression 380
nominal data 186
nonlinear regression 390
nonparametric statistics. 187
normal distribution. 122, 433
Normal Distribution-large sample, large part of the population. 168, 435
Normal Distribution-largesample, small part of thepopulation. 156, 434
normal equations 381

Ondex

null hypothesis 134
Oeuf Cubique 295
one sample with two variables264, 466
one-tail vs. two-tail. 142, 232
One-Way ANOVA test for independent samples 287, 469
One-Way ANOVA test for matched samples. 297, 472
ordinal data. 186
outlier. 37, 149
$\mathcal{P}(\mathrm{H} \mid \mathrm{V})$ 79
parametric statistics 187
past 420
Pearson Product Moment Correlation Coefficient for Sample Data. 375
Pearson, Karl. 173
percent correct predictions statistic 419
percentile. 41
permutations 109
pi (π) 30
platykurtic. 49
point estimate 162
Poisson distribution 102, 431
populations vs. samples 30
Post Test for One-Way ANOVA for independent samples 290, 471
Post Test for One-Way ANOVA for matched samples 301, 475
power of a test. 185
prediction interval 374, 377
present 420
proportion..... 30, 48, 113, 115, 117, 123
binomial distribution-large sample. 162, 437
binomial distribution-small sample. 217, 438
quartile 41
quintile 41
ratio data 186
regression line 374
Runs test 204, 450
sample space. 60, 66
event 61
samples
blocked 297
determining sample size 158
how to take one 133
independent samples 240
paired samples 229
pilot samples. 141
sensitive questions. 143
stratified sample. 148
systematic sample. 147
Ten Rules of Fair Play. 139
Two Large Independent Samples. 243, 457
Two Normal Independent Samples with known sigmas. 245, 458
Santa Clausing Village 34
saturated model. 387
scatter diagram. 22
sequence
random/cyclical/trend 203
sigma notation 44
Sign test 183, 445
Sign test for nominal data187, 446
Sign test for paired samples of Hot \& Cold 239, 455
Sign test for two paired samples 236, 454
simple random sample. 146
skewed curves. 49
left. 182
slope-intercept form. 24
Smith-Satterthwaite test 252, 461
burglar's use of this test 253
squared multiple R 381
standard deviation. 44
of a population (σ). 47
of a sample (s) 47
standardizing the data. 175
statistically significant 150
step down method. 388
Student's t-distribution 173, 436
symmetry. 179
ten lollipops 217
Ten Rules of Fair Play 139
The Chart. 48
topology. 310
trends in sequences. 203
Two Normal IndependentSamples with knownsigmas.245
two paired samples tests-four ofthem.230, 451
Two Proportions with 2 samplesin 2 categories test.240, 456two small independent sampleswhen standard deviationsroughly equal. . . 247, 460
with different standarddeviations. 252, 461
Two-Factor ANOVA 303, 476
post test 306, 479
Two-Factor ANOVA with manyobservations per cell313, 480
type I error 137
type II error. 137
uniform distribution. 179
unimodal. 50
Vagrancy Case of Fred Gauss vs. the State of Kansas 82
variance. 44, 202
Venn diagrams 66
Wald interval. 163
weighted average. 289
Wilcoxon Rank-Sum test 462
Wilcoxon Signed Ranks test 179, 444
Wilcoxon Signed Ranks test for two paired samples.233, 452
$y=m x+b$ 24
y hat (y) 383
z-score. 124
standardizing the data 175

[^0]: * 46 by actual count

[^1]: * None of those old word problems like: JACKIE IS CHASING DALE DOWN THE HALL WITH AN AX. JACKIE IS TRAVELING 7 FT/SEC AND DALE IS RUNNING AT 5 FT/SEC. THEY are 8 FEET APART. HOW SOON SHOULD DALE START APOLOGIZING?

