- (d) (i) The y-intercept is 8.
 - (ii) Gradient = $\frac{-8}{40} = -\frac{1}{5}$
 - **(iii)** $y = -\frac{1}{5}x + 8$
- **22.** An open rectangular container of depth 10 cm is 20% filled with water initially.

Water is dripped into the container so that the water level in it increases at a constant rate of 0.5 cm every 30 seconds. Let y cm be the depth of water in the container after x minutes.

(a) Copy and complete the following table.

x	0	2	4	6	8
у					

- **(b)** Taking 2 cm to represent 1 unit on the *x*-axis and 1 cm to represent 1 unit on the *y*-axis, draw the graph of y against x for $0 \le x \le 8$.
- (c) Use the graph in (b) to estimate
 - (i) the depth of the water after 7 minutes,
 - (ii) the time taken to fill the container to a depth of 5 cm.
- (d) (i) Write down the y-intercept of the graph.
 - (ii) Find the slope of the graph.
 - (iii) Hence, express y as a function of x.

Solution

(a)	x	0	2	4	6	8
	у	2	4	6	8	10

- (c) (i) After 7 min, the depth is 9 cm.
 - (ii) 3 min
- (d) (i) y-intercept is 2

(ii) Slope =
$$\frac{\text{ris}}{\text{ru}}$$

= $\frac{7}{7}$
= 1
(iii) $y = x + 2$

23. The altitude *y* metres of a mini aircraft above ground level at time *t* seconds is given by $y = t^2 - 7t + 50$ for $0 \le t \le 7$. The following table shows some corresponding values of *t* and *y*.

t	0	1	2	3	4	5	6	7
y	50	p	40	38	q	40	44	50

- (a) Calculate the values of p and q.
- **(b)** Taking 2 cm to represent 1 unit on the *t*-axis and 2 cm to represent 5 units on the *y*-axis, draw the graph of $y = t^2 7t + 50$ for $0 \le t \le 7$.
- (c) Estimate from the graph, the minimum altitude of the mini aircraft during its flight. Write down the corresponding time.
- (d) Estimate from the graph, the time interval for which the mini aircraft is at most 45 cm above ground level.

Solution

(a) When
$$t = 1$$
,
 $y = (1)^2 - 7(1) + 50$
 $= 44$
 $\therefore p = 44$
When $t = 4$,
 $y = (4)^2 - 7(4) + 50$
 $= 38$

(c) From the graph, the minimum point is (3.5, 37.5). Hence, the minimum altitude is 37.5 m and the corresponding time is 3.5 s.

Note: by calculation, the minimum altitude is 37.75.

I) From the graph, the estimated time interval is

(d) From the graph, the estimated time interval is $0.8 \text{ s} \le t \le 6.2 \text{ s}.$

Solution

- (a) The revenue is greater than the expenditure in the third and fourth quarters. Hence, the company made a profit in the third and fourth quarters.
- **(b)** Total revenue = $\$[(220 + 307 + 425 + 400) \times 1,000]$ = \$1,352,000

Total expenditure = $\{(265 + 310 + 374 + 352) \times 1,000\}$ = $\{1,301,000\}$

Since the total revenue is greater than the total expenditure, the company made a profit for the year.

2. The prices, in dollars, of some stationery items that are sold in 3 bookstores are shown in the table below.

	Unit prices of stationery items (\$)					
	Pen	Pen Marker R				
Bookstore A	0.45	1.35	0.60			
Bookstore B	0.50	1.30	0.50			
Bookstore C	0.40	1.50	0.55			

- (a) (i) Which bookstore's marker is the cheapest?
 - (ii) Which bookstore's ruler is the most expensive?
- **(b)** A student wants to buy 5 pens, 4 markers, and 3 rulers from the same bookstore. Which bookstore should he buy the items from? Explain your answer.

Solution:

- (a) (i) Bookstore B
 - (ii) Bookstore A
- **(b)** Total cost in Bookstore A
 - $= 5 \times \$0.45 + 4 \times \$1.35 + 3 \times \$0.60$
 - = \$9.45

Total cost in Bookstore B

 $= 5 \times \$0.50 + 4 \times \$1.30 + 3 \times \$0.50$

= \$9.20

Total cost in Bookstore C

 $= 5 \times \$0.40 + 4 \times \$1.50 + 3 \times \$0.55$

= \$9.65

He should buy the items from bookstore B as they cost the least in bookstore B.

3. The following table shows the arrival time and departure time of 5 visitors to a school on a particular day.

Visitor	Arrival time	Departure time		
Mr. Parler	08:30	10:00		
Ms. Rose	09:10	13:15		
Mrs. Smith	10:25	11:00		
Mr. Dylan	11:45	12:30		
Mr. James	14:55	16:40		

- (a) How many visitors came to the school between 9 AM and 1 PM?
- (b) How many of the visitors stayed in the school for
 - (i) at most an hour,
 - (ii) at least 1 hour and 30 minutes.
- (c) Find the mean duration of the visits. Give your answer in hours and minutes.

Solution

- (a) 3 visitors came to the school between 9 AM and 1 PM.
- **(b)** (i) 2 visitors stayed in the school for at most an hour.
 - (ii) 3 visitors stayed in the school for at least 1 hour 30 minutes.
- (c) Total number of hours the visitors stayed
 - = 1 hr 30 min + 4 hr 5 min + 35 min + 45 min
 - + 1 hr 45 min
 - = 6 hr 160 min
 - = 520 min

∴ mean duration of the visits =
$$\frac{520}{5}$$

= 104 min
= 1 hr 44 min

4. The diagram below shows the temperature $y \, ^{\circ}$ C of a mug of water at time x minutes as it is warmed over a 6-minute interval.

- (a) State the initial temperature of the water.
- (b) Find, from the diagram,
 - (i) the temperature of the water after 4 minutes of warming,
 - (ii) the time taken to warm the water to 32 °C.
- (c) Find the rate of increase in the temperature of the water.
- (d) Hence, express y in terms of x.

Solution

- (a) 18 °C
- **(b) (i)** 46 °C
 - (ii) 2 min

(c) Rate of increase =
$$\frac{60 - 18}{6}$$

= 7 °C/mir

- (d) y = 7x + 18
- **5.** Instructions on the use of medications in liquid form are usually quoted in metric teaspoons. The following is a conversion table between metric teaspoons and cubic centimeters (cm³).

Metric teaspoons (x)	2	4	6	8	10
Cubic centimeters (y cm³)	10	20	30	40	50

- (a) Draw the graph of y against x.
- (b) Read from the graph,
 - (i) the number of cubic centimeters in 5 metric teaspoons,
 - (ii) the number of metric teaspoons in 38 cubic centimeters.
- (c) Find an equation connecting x and y.

(b)
$$QX^2 = XY^2 + QY^2$$
 (Pythagorean Theorem)
= $24^2 + 30^2$
= 1,476
 $QX = \sqrt{1,476}$
= 38.4 cm (correct to 3 sig. fig.)

Further Practice

- **11.** Calculate the values of *x* and *y* in each of the following diagrams given that the measurements are in cm.
 - (a) BCD is a straight line. (b) SVT is a straight line.

Solution

(a) In
$$\triangle ABC$$
,
 $AC^2 = AB^2$

$$AC^2 = AB^2 + BC^2$$
 (Pythagorean Theorem)
 $BC^2 = AC^2 - AB^2$
 $x^2 = 30^2 - 18^2$
 $= 576$
 $x = \sqrt{576}$
 $= 24$
In $\triangle ABD$,
 $AD^2 = AB^2 + BD^2$ (Pythagorean Theorem)
 $55.5^2 = 18^2 + (24 + y)^2$
 $(24 + y)^2 = 2,756.25$
 $24 + y = 52.5$

y = 28.5

(b) In
$$\triangle USV$$
,
 $US^2 = SV^2 + UV^2$ (Pythagorean Theorem)
 $UV^2 = US^2 - SV^2$
 $x^2 = 37^2 - 35^2$
 $= 144$
 $x = \sqrt{144}$
 $= 12$
In $\triangle UVT$,
 $UT^2 = UV^2 + VT^2$ (Pythagorean Theorem)
 $y^2 = 12^2 + (110 - 35)^2$
 $= 5,769$
 $y = \sqrt{5,769}$
 $= 76.0$ (correct to 3 sig. fig.)
(c) In $\triangle ABC$,

- (d) In $\triangle ACD$, $AC^2 = AD^2 + CD^2$ (Pythagorean Theorem) $AD^2 = AC^2 - CD^2$ $x^2 = 61^2 - 60^2$ = 121 $x = \sqrt{121}$ = 11 $y^2 = 11^2 + (60 - 25)^2$ (Pythagorean Theorem) = 1,346 $y = \sqrt{1,346}$ = 36.7 (correct to 3 sig. fig.)
- **12.** In the figure, PQRS is a parallelogram, T is a point on PS, and QT is perpendicular to PS. QT = 12 cm, QS = 37 cm, and SR = 15 cm.

- (a) Find the length of QR.
- (b) Calculate
 - (i) the perimeter of *PORS*,
 - (ii) the area of PQRS.

Enrichment

26.

In the figure, OABC is a parallelogram, where O is the origin, A is (a, 0), and C is (c, h).

- (a) Express the coordinates of B in terms of a, c, and h.
- **(b)** Show that $2(OA^2 + OC^2) = OB^2 + AC^2$.

Solution

(a) Let (p, q) be the coordinates of B.

$$CB = OA$$

$$\therefore p - c = a$$

$$p = a + c$$

Since BC // OA, q = h.

 \therefore the coordinates of B is (a + c, h).

(b)
$$2(OA^2 + OC^2) = 2[a^2 + (c - 0)^2 + (h - 0)^2]$$

= $2(a^2 + c^2 + h^2)$

$$OB^2 + AC^2$$

$$= [(a+c-0)^2 + (h-0)^2] + [(c-a)^2 + (h-0)^2]$$

= $a^2 + 2ac + c^2 + h^2 + c^2 - 2ac + a^2 + h^2$

=
$$2(a^2 + c^2 + h^2)$$

 $\therefore 2(OA^2 + OC^2) = OB^2 + AC^2$ (shown)

27.

In the diagram, *OABC* and *ADEF* are squares. The sum of the areas of *ADEF* and *OABC* is 34 units². The difference of the areas of *ADEF* and *OABC* is 16 units². Find

- (a) the areas of ADEF and OABC,
- **(b)** the distance *CF*,
- (c) the equation of the line CE.

Solution

(a) Let p units² and q units² be the areas of ADEF and OABC respectively.

$$p + q = 34$$
 ----- (1)

$$p + q = 34 - \dots$$
 (1)
 $p - q = 16 - \dots$ (2)

$$(1) + (2)$$
:

$$2p = 50$$

$$p = 25$$

Substituting p = 25 into (1),

$$25 + q = 34$$

$$q = 9$$

 \therefore the area of *ADEF* = 25 units² and area of *OABC* = 9 units².

(b) Length of a side of $ADEF = \sqrt{25}$

Length of a side of $OABC = \sqrt{9}$

$$= 3$$
 units

 \therefore the coordinates of *C* is (0, 3) and the coordinates of *F* is (3, 5).

$$CF = \sqrt{(3-0)^2 + (5-3)^2}$$

$$=\sqrt{13}$$
 units

(c) The coordinates of E is (8, 5).

Slope of
$$CE = \frac{5 - 3}{8 - 0}$$

 \therefore the equation of the line *CE* is $y = \frac{1}{4}x + 3$.

28.

The figure shows a L-shaped region *OABCDE*, where B is (-7, 4) and D is (-3, 8). Find the equation of the line passing through the origin O that divides the region into two parts of equal area.

Solution

Produce BC to meet the y-axis at F.

Area of
$$CDEF = 3 \times (8 - 4)$$

$$= 12 \text{ units}^2$$

Construct the vertical line *HK* such that the area of *ABHK* is equal to the area of *CDEF*.

i.e.
$$AK \times AB = 12$$

$$AK \times 4 = 12$$

$$AK = 3$$

Hence, the coordinates of H is (-4, 4).

We see that *OH* divides the square *OFHK* into two parts of equal area.

Thus, area of ABHK + area of $\triangle OHK$ = area of CDEF + area of $\triangle OFH$.

 \therefore OH is the line that divides the L-shaped region into two parts of equal area.

Slope of
$$OH = \frac{4-0}{-4-0}$$

 \therefore the equation of *OH* is y = -x.