Quadratic Factorization and Equations

Basic Practice

1. Factorize each of the following.
(a) $w^{2}+9 w+14$
(b) $x^{2}-11 x+24$
(c) $y^{2}+6 y-16$
(d) $z^{2}-3 z-10$
(e) $a^{2}+40+13 a$
(f) $6 b+b^{2}-27$
2. Factorize each of the following.
(a) $2 p^{2}+11 p+14$
(b) $5 q^{2}-23 q+12$
(c) $4 r^{2}+4 r-35$
(d) $6 s^{2}-7 s-5$
(e) $3 x^{2}+3-10 x$
(f) $11 x+6 x^{2}+4$
3. Factorize each of the following.
(a) $2 y^{2}+12 y+16$
(b) $4 m^{2}-20 m+24$
(c) $5 n^{2}+10 n-40$
(d) $6 n^{2}-26 n-20$
(e) $28 c+8 c^{2}-60$
(f) $-15-39 p+18 p^{2}$
(g) $3 m^{2}-12 m n+12 n^{2}$
4. (a) Factorize $2 x^{2}+x-1$.
(b) Hence, evaluate $2 \times 99^{2}+99-1$.
5. The general term of a sequence is $T_{n}=p n^{2}+n-3$, where p is a constant. The 3 rd term of the sequence is 18 .
(a) Find the value of p.
(b) Hence, express the general term as a product of two factors in n.
(c) Use the answer in (b) to find the 101st term.
6. (a) Make y the subject of the formula $z=\frac{x-2 y}{3 y}$.
(b) Hence, find the value of y when $x=22$ and $z=-\frac{5}{2}$.
7. (a) Simplify $\frac{1}{x}-\frac{1}{y}$.
(b) Hence, find the value of $\frac{1}{x}-\frac{1}{y}$ if $6 x y=-1$ and $6(x-y)=5$.
8. (a) Factorize
(i) $x^{2}+3 x-10$,
(ii) $2 x^{2}-4 x$.
(b) Simplify $\frac{x^{2}+3 x-10}{2 x^{2}-4 x}$.
(c) (i) Make x the subject of the formula $y=\frac{x^{2}+3 x-10}{2 x^{2}-4 x}$.
(ii) Hence, find the value of x when $y=13$.

Further Practice

12. Simplify each of the following algebraic fractions.
(a) $\frac{3 x-6}{x^{2}-3 x+2}$
(b) $\frac{-6 x+18}{x^{2}+x-12}$
(c) $\frac{10 x-50}{x^{2}-25}$
(d) $\frac{2 x+6}{8 x^{2}-72}$
(e) $\frac{3 x^{2}+7 x-6}{3 x^{2}-20 x+12}$
(f) $\frac{4 x^{2}-11 x-20}{-5 x^{2}+18 x+8}$
(g) $\frac{8 x^{2} y-3 x^{3}}{9 x^{2}-64 y^{2}}$
(h) $\frac{5 x-6 y+30 x z-36 y z}{2-72 z^{2}}$
(i) $\frac{4 x^{2}-20 x w+25 w^{2}}{4 x y-14 x z-10 w y+35 w z}$
13. Simplify each of the following.
(a) $\frac{2 x-3 y}{4 a b-16} \times \frac{a b^{2}-4 b}{6 x z-9 y z}$
(b) $\frac{x^{3}-4 x}{3 x-6} \times \frac{9 x}{x+2}$
(c) $\frac{25 x^{2}-y^{2}}{x^{2}-4 x y} \times \frac{3 x^{3}}{15 x+3 y}$
(d) $\frac{x^{2}+2 x+1}{x^{2}-3 x-4} \times \frac{x^{2}-16}{2 x^{2}-2 x-4}$
(e) $\frac{3 x z-z y-3 w x+w y}{9 x^{2}-12 x y+4 y^{2}} \times \frac{2 y-3 x}{w-z}$
(f) $\frac{6 x-2 x^{2}}{3 y+4} \div \frac{9-x^{2}}{4 w+3 w y}$
(g) $\frac{x^{2}-5 x+6}{x^{2}-4} \div \frac{x^{2}-6 x+9}{4 x-12}$
(h) $\frac{4 x^{2}+4 x y+y^{2}}{9 x^{2}} \div \frac{5 y^{2}-20 x^{2}}{3 y-6 x}$
(i) $\frac{4 x^{2} z-16 z}{x y^{2}+2 y^{2}} \div \frac{(4 z)^{2}}{(2 y)^{3}}$
14. Under an enlargement with center of enlargement at (2, 4), $\triangle A B C$ with vertices $A(1,3), B(3,2)$, and $C(5,2)$ is mapped onto $\triangle P Q R$.
If P is a point in the y-axis,
(a) state the coordinates of P and find the scale factor of the enlargement,
(b) find the coordinates of Q and R,
(c) show that the area of $\triangle P Q R$ is 4 times the area of $\triangle A B C$.

Challenging Practice

29. (a) Using a graph with x ranging from -8 to 6 and y from -10 to 6 and a scale of 1 cm to represent 1 unit on both axes, draw and label $\triangle A B C$ with vertices $A(6,-1), B(6,-4)$, and $C(3,-2)$.
(b) (i) Reflect $\triangle A B C$ in the line $y=x$ and label the image as $\triangle A_{1} B_{1} C_{1}$.
(ii) Write down the coordinates of A_{1}, B_{1}, and C_{1}.
(c) (i) Translate $\triangle A_{1} B_{1} C_{1}$ by -4 units in the x-direction and -4 units in the y-direction and label the image as $\triangle A_{2} B_{2} C_{2}$.
(ii) Write down the coordinates of A_{2}, B_{2}, and C_{2}.
(d) (i) Rotate $\triangle A_{2} B_{2} C_{2}$ through 180° about the fixed point $(-3,-4)$ and label the image as $\triangle A_{3} B_{3} C_{3}$.
(ii) Write down the coordinates of A_{3}, B_{3}, and C_{3}.
(e) (i) Rotate $\triangle A_{3} B_{3} C_{3}$ through 90° clockwise about the fixed point $(2,-5)$ and label the image as $\triangle A_{4} B_{4} C_{4}$.
(ii) Write down the coordinates of A_{4}, B_{4}, and C_{4}.
(f) Describe a single the transformation that will map $\triangle A_{1} B_{1} C_{1}$ directly $\triangle A_{3} B_{3} C_{3}$.
30. A rectangular piece of paper, $A B C D$, is cut into 4 smaller pieces along the lines $A C$ and $M N$ such that $\triangle A M X$ is similar to $\triangle A D C . A X=25 \mathrm{~cm}, A M=15 \mathrm{~cm}, M X=20 \mathrm{~cm}, D C=32 \mathrm{~cm}$, and $M N$ is parallel to $D C$.

(a) Calculate the length of
(i) $N X$,
(ii) CN ,
(iii) $C X$.
(b) Hence, find the area of
(i) $A B N X$,
(ii) $C D M X$.

Enrichment

27.

(a) In the figure, $A H I B, B J C, C H D$, and $E I J F$ are straight lines. Find $m \angle a+m \angle b+m \angle c+m \angle d+m \angle e+m \angle f+m \angle g$.
(b) If the sum of the interior angle of a regular polygon is the same as the sum in (a), find the number of sides of the polygon.
28. In the figure, $\triangle A B C$ is a right-angled triangle with $m \angle A C B=90^{\circ} . D, E$, and F are points on the sides of $\triangle A B C$ such that $A D=A F$ and $B D=B E$.

(a) Find the value of x.
(b) If an exterior angle of a regular polygon is equal to $\angle x$, find the number of sides of the polygon.
(c) If $m \angle C A B=64^{\circ}$, find $m \angle B E D$.
29. In the figure, O is the centre of the circle. $m \angle O B C=32^{\circ}, m \angle O C D=62^{\circ}$, and $m \angle D O E=65^{\circ}$.

Find
(a) $m \angle B O C$,
(b) $m \angle B O E$,
(c) $m \angle B A E$.

