

Basic Practice

1. In each of the following, determine whether the specified value of x is a solution of the given inequality.

(a)	x > 10;	x = 19	(b) $x < 5;$	<i>x</i> = 5
(c)	x < -12;	x = -2	(d) $x > -23;$	x = -6
(e)	$x \ge 34;$	<i>x</i> = 34	(f) $4x \le 20;$	x = -1
(g)	5x > 7;	<i>x</i> = 1.2	(h) $3x \ge -2;$	$x = -\frac{1}{2}$
(i)	$\frac{x}{2} \ge -5;$	x = -11	(j) $\frac{3}{5}x < 9;$	$x = -\frac{3}{5}$

2. Solve the following inequalities.

(a)	2x > 12	(b)	4x > 32
(c)	3x < -18	(d)	5x < 22.5
(e)	$6x \ge 27$	(f)	$8x \ge -30$
(g)	$16x \leq 36$	(h)	$24x \leq -64$

- 3. (a) List all the positive even integers that are smaller than or equal to 20.
 - (b) Find all possible values of x in each of the following inequalities if x is a positive even integer that is smaller than or equal to 20.

(i)	x < 10	(ii)	x > 12
(iii)	$x \leq 9$	(iv)	$x \ge 14$
(v)	2x < 8	(vi)	3x > 51
(vii)	$5x \le 21$	(viii)	$4x \ge 71$

- 4. (a) List all the prime numbers that are smaller than or equal to 30.
 - (b) Find all possible values of x in each of the following inequalities if x is a prime number that is smaller than 30.

(i)	x < 15	(ii)	<i>x</i> > 23
(iii)	$x \le 17$	(iv)	$x \ge 22$
(v)	4x < 28	(vi)	5x > 45
(vii)	$2x \leq 7$	(viii)	$3x \ge 43$

Further Practice

- 11. (a) A wire is bent into a square of area 81 cm². Find
 (i) the length of a side of the square,
 (ii) the perimeter of the square.
 - (b) Suppose the same wire is bent into an equilateral triangle. Find the length of a side of the equilateral triangle.
- 12. (a) The length and width of rectangle ABCD are 25 cm and 32 cm respectively. Find
 (i) the perimeter of the rectangle,
 (ii) the area of the rectangle.
 - (b) A square is formed when the sides of ABCD are extended. If the length of ABCD is extended by 60%, find
 - (i) the length of the square,
 - (ii) the percentage increase in the width of the rectangle.
 - (c) Express the area of the square as a percentage of the area of the rectangle.

13. Two small circles are cut out from a large circle of diameter 48 cm. The point O is the center of the large circle and the diameters of the small circles are OX and OY respectively. The points X and Y are on the circumference of the large circle.

Find, in terms of π ,

- (a) the area of the resulting plane figure,
- (b) the perimeter of the resulting plane figure.

- **14.** (a) Plot each of the following points in the given diagram.
 - (i) A(-3, -4), B(2, -4), and C(4, 1)
 - (ii) P(-4, 1), Q(-4, -2), and R(2, 3)
 - (b) Hence, find the area of
 - (i) $\triangle ABC$,
 - (ii) $\triangle PQR$.
 - (c) The points *D* and *S* lie on the *x*-axis and *y*-axis respectively. Find the area of
 - (i) $\triangle ABD$,
 - (ii) $\triangle PQS$.

Enrichment

- **26.** In the diagram, three cubical building blocks are stacked up on a table. The lengths of the sides of the blocks are 5 cm, 10 cm, and 15 cm respectively.
 - (a) Find the total area of the exposed surfaces of the stack, excluding the contact surface with the table.
 - (b) If a cylinder of height 30 cm has volume equal to the total volume of the blocks, find the base radius of the cylinder.

27. Six cubes of side 1 cm are glued together to form a solid. Three possible solids P, Q, and R are shown below.

- (a) Determine the total surface area of solid
 - (i) *P*,
 - (ii) *Q*,
 - (iii) *R*.
- (b) Form a solid with the least total surface area.
- (c) Form a solid with the greatest total surface area.

A developer builds a row of identical semi-detached huts along a beach as shown in the diagram above. *ABCDE* is the cross-section of a hut. $\triangle ABE$ is a right-angled triangle with AB = 1.5 m, AE = 2 m, and $m \angle BAE = 90^{\circ}$. *BCDE* is a rectangle with CD = 2.5 m and BC = 1.5 m. The length of each hut is 3 m. The thickness of each side wall is 30 cm.

- (a) Find the total surface area of each hut, excluding the floor.
- (b) Find the volume of space of each hut (ignore the thickness of the walls).
- (c) If n huts are in a row, find, in terms of n,
 - (i) the total roof area,
 - (ii) the total volume of the side walls.

Challenging Practice

30. Let ξ be the set of employees in a company,

- $P = \{\text{employees in the company who earn more than $2,000 a month}\}$
- $Q = \{\text{employees in the company who earn at least $3,000 a month}\}.$
- (a) Describe the sets P' and Q'.
- (b) Describe using ' \subset ', the relationship between
 - (i) P and Q,

and

- (ii) P' and Q'.
- **31.** The frequency table below shows the number of dogs owned by a group of children.

Number of dogs	0	1	2	3	4	5
Number of children	7	10	5	5	x	1

- (a) The mean number of dogs owned by each child is 1.6. Form an equation in x and solve it.
- (b) Hence, find the number of children in the group.
- (c) A child is randomly selected. Find the probability of selecting a child with more than 3 dogs.
- (d) A dog is randomly selected. Find the probability of selecting a dog that belongs to a child who has at most 3 dogs.
- 32. A box contains 200 buttons that are either blue or green. A button is randomly selected from the box.
 - (a) Find the number of each type of button if the probability of selecting a blue button is $\frac{11}{25}$.
 - (b) How many blue buttons must be removed from the 200 buttons so that the probability of selecting a green button will become $\frac{8}{13}$?
 - (c) How many blue buttons must be added to the 200 buttons so that the probability of selecting a green button will become $\frac{14}{27}$?
 - (d) When x blue buttons are added and x green buttons are removed from the 200 buttons, the probability of selecting either a blue or green button is the same. Find the value of x.
- **33.** Jeffrey bought a grey (G), a red (R), a blue (B), and a yellow (Y) T-shirt. He also bought a blue (B), a white (W), and a grey (G) pair of jeans. Suppose that Jeffrey randomly matches a shirt with a pair of jeans.
 - (a) List all the possible ways of matching a shirt with a pair of jeans.
 - (b) Find the probability of Jeffrey wearing
 - (i) a yellow T-shirt,
 - (ii) a white pair of jeans.
 - (c) Let M be the event that Jeffrey matches a shirt with a pair of jeans of the same color. Find P(M) and P(M').