9. Evaluate the following, expressing your answer in the simplest form.
(a) $\frac{4}{5} \times \frac{5}{8} \div \frac{1}{6}+\frac{1}{6}=$
(b) $\frac{8}{18} \times \frac{15}{20} \div \frac{24}{15} \times \frac{42}{35}=$
(c) $1 \frac{1}{7} \div 2 \frac{1}{4} \times \frac{5}{8}=$
(d) $2 \frac{1}{2} \div 4 \frac{2}{5} \div \frac{5}{8}=$
(e) $\frac{2}{7} \div \frac{2}{14} \times 3 \frac{5}{6}+\frac{1}{3}=$
(f) $1 \frac{4}{13} \times 7 \frac{4}{5} \div 11 \frac{1}{3}=$
(g) $\frac{3}{10}+\frac{2}{3} \div 5 \times \frac{1}{4}=$
(h) $5 \frac{1}{3} \times 4 \frac{1}{2}-\frac{13}{4} \times \frac{8}{13}=$
10. Evaluate the following, expressing your answer in the simplest form.
(a) $\left(\frac{1}{2}+\frac{1}{3}\right) \times \frac{1}{4}=$
(b) $\frac{2}{3} \div 4+\left(3-\frac{2}{5}\right)=$
(c) $\frac{1}{3} \times\left(\frac{1}{2}+\frac{1}{4}\right) \div \frac{1}{6}=$
(d) $\left(\frac{3}{4} \times \frac{1}{3}-\frac{1}{12}\right) \div \frac{1}{2}=$
11. What number goes in the box?
$8 \times \square+4-6 \div \frac{2}{3}=27$
12. The product of two numbers is $5 \frac{1}{4}$. If one of the numbers is $2 \frac{1}{3}$, what is the other number?
13. If $\frac{3}{8}$ of a number is 6 , what is $\frac{3}{4}$ of the number?
14. After a fraction is increased by $\frac{1}{4}$ of its value, the result is $3 \frac{1}{3}$. What is the the original fraction?
15. Find
(a) the area of the shaded figure,
(b) the perimeter of the shaded figure.
(Take $\pi=\frac{22}{7}$)
16. The area of the circle is 6 times the area of the shaded rectangle. O is the center of the circle. If the diameter of the circle, NP, is 42 cm , find the perimeter of the shaded rectangle.
$\left(\right.$ Take $\left.\pi=\frac{22}{7}\right)$
17. The figure consists of an isosceles triangle ABC and 2 identical semicircles, overlapping one another. $\mathrm{AC}=\mathrm{BC}=10 \mathrm{~cm}$ and the length of each of these two lines is $\frac{5}{6}$ that of AB . Find the perimeter of the shaded part of the figure.
(Take $\pi=3.14$)

18. The given line graph shows the distance two boys, Peter and Paul, bicycled over a certain period of time. Each boy started bicycling from the same starting point towards a common destination.

(a) What was Paul's average bicycling speed?

(b) Peter rested from \qquad am to \qquad am.
 am
(c) How much slower was Peter's bicycling speed for the second part of his journey after his rest than his speed for the first part of his journey?

