ANSWERS

Chapter I MULTI-DIGIT WHOLE **NUMBERS**

Exercise IA Numbers to IO Million

- (a) 2.367.459 Ι. (b) 3.287.905
- 9,407,256 2.
- three million, two hundred five thousand, eight 3. hundred seventy
- 4. (a) 7,005,420 **(b)** 6,450,025
 - (c) 800,000 (d) 8,000,000
- (a) 700,000 (b) 7,000 5.
 - $\frac{1}{10}$ 10 (d) (c)
- (a) 1.023.596 6. (b) 9.653.201
 - (c) Accept all correct answers. Example: 6,095,312

Multiply by Tens, Hundreds, Exercise IB and Thousands (I)

- Ι. (a) 350: 3.500: 35.000
 - **(b)** 560; 5,600; 56,000
 - (c) 7,280; 72,800; 728,000
 - (d) 9,430; 94,300; 943,000
- 2. (a) 100 **(b)** 10 (c) 1,000 (a) 1,000 3. **(b)** 10 (c) 100 (a) 3,360 4. (b) 37,760
 - 313,830 11,100 (c) (d) (e) 332,800 (f) 291,000 (g) 1,652,000 9,245,000

(h)

- 12 × 3,000 = 12 × 3 × 1,000 5. $= 36 \times 1.000$ = 36.000 Mr. Dave will earn \$36,000 in I year.
- 6. $489.500 \times 10 = 4.895.000$ The population of Town B is 4,895,000.
- Exercise IB Multiply by Tens, Hundreds, and Thousands (2) I. (a) 5,400 **(b)** 54.000 540.000 (c) 2. (a) 8.970 **(b)** 89,700 897.000 (c) (b) 10² 3. (a) 10 10³ (c) $8,572 \times 10^{1}$ (b) $8,572 \times 10^{2}$ 4. (a) 8,572 _× 10³ (c) 25×10^2 (b) 97×10^2 5. (a) 293×10^2 (d) 897×10^3 (c) 263×10^{3} (f) 359 _× 10³ (e) 365 × 300 = 365 × 3 × 100 6. (a) = <u>1,095</u> × 100 = 1,095 x 10² 587 × 400 = 587 × 4 × 100 (b) $= \frac{2,348}{100} \times 100$ = 2,348 × 10² 7,340 × 600 = 7,340 × 6 × 100 (c) = 4<u>4,040</u> × 100 = 4,404 \times 10³ (d) $4,820 \times 700 = 4,820 \times __7 \times 100$ = 33,740 × 100 3,374 _× 10³ =
 - (e) $394 \times 8,000 = 394 \times 8 \times 1,000$ = 3,152 × 1,000 = 3,152,000 $= 3.152 \times 10^{3}$

Т

Exe	ercis	e IC	Divide by Thousan	y Ten Ids	s, Hundreds, and	8.	3 × 76	: 10 ³ = 3,000 8,000 ÷ 3,0))00 = 768,0	000 ÷ 1,000) ÷ 3	
I.	(a)	300		(b)	30				= 768 ÷ = 256	3		
	(c)	3					Th	e number is	\$ 256.			
2	(a)	10		(b)	100	9.	54	3 × 6 × 10² =	= 3,258 × 10	0		
۷.	(u)	10		(0)	100		Th	= e number is	= 325,800 s 325,800.			
	(c)	1,000)			10	11.4	00 : 200 -		0.10		
3.	(a)	82,50	00	(b)	825,000	10.	11,4	= 000 ÷ 300	= 11,400 ÷ 10 = 114 ÷ 3	0 - 3		
	(c)	1,000)				Th	= e cost of ec	= 38 Ich pot of p	lant was \$	38.	
4.	(a)	730		(b)	4,362	١١.	(a)	7,654,20	3 (b)	2,034,5	76	
5.	(a)	I,700)	(b)	170	12.						
	(c)	17				Hundr	red	Ten Thousands	Thousands	Hundreds	Tens	Ones
6.	(a)	I,60C)	(b)	160	7		8	9	3	4	0
	(c)	16					Dig	git in the ter	n thousands	s place = 4	× 2	
7.	(a)	1,300)	(b)	130		Va	lue of the d	igit in the te	= 8 en thousar	nds pl	ace
8.	(a)	280		(b)	240		= 3 = 9	00 × 30 ,000				
0.	(a)	100		(4)	260		Digit in the hundred thousands place = 9 = 7					- 2
	(C)	100		(a)	200		Th	e number is	5 789,340.			
	(e)	170		(f)	42							
9.	(a)	315,0	00	(b)	31,500	Ch	ap	ter 2	ראב FOU אידש	JR WHOU	F	
	(c)	3,150				NU	JM	BERS	5 **1111	WIIOL		
Ch			- ! *			Exercise 2A Order of Operations (I)						
I.	В	r Pra	ctice			I.	(a)	205 - 149	9 + 96 = 56 = 152	+ 96		
2.	С						(b)	588 ÷ 7 ×	4 = 84 × 4 = 336			
3.	D						(c)	100 - 68	+ 37 × 5 = 10	00 – 68 + I	85	
4.	А								= 3 = 2	32 + 185 217		
5.	D						(d)	204 ÷ 6 +	+ 38 × 4 = 3 - 3	4 + 38 × 4 4 + 152		
6.	807	,000,							= 18	36		
7.	36						(e)	36 ÷ 4 ×	5 - 68 + 19	= 34 × 5 – = 170 – 68 = 102 + 19 = 121	68 + + 9	9

(f) $40 \div 2 \times 5 - 36 + |6| = 20 \times 5 - 36 + |6|$ = 100 - 36 + 16 = 64 + 16 = 80 (g) $103 + 47 \times 8 \div 4 - 29 = 103 + 376 \div 4 - 29$ = 103 + 94 - 29 = 197 - 29 = 168 (h) $390 \div 6 \times 7 - 29 \times 3 = 65 \times 7 - 29 \times 3$ = 455 - 29 × 3 = 455 - 87 = 368 **2.** (a) 38 + 2 × 20 **(b)** $38 + 2 \times 20 = 38 + 40$ = 78 Kirk has 78 marbles.

3. (a) 3×8-6
(b) 3×8-6=24-6 = 18 Megan has 18 muffins left.

Exercise 2A Order of Operations (2) Ι. (a) $(24 + 18) \div 6 = 42 \div 6$ = 7 **(b)** $(20 - 13) \times 9 = 7 \times 9$ = 63 (a) $80 - (9 + 11) \times 3 = 80 - 20 \times 3$ 2. = 80 - 60 = 20 **(b)** $(40 - 26) \div 2 \times 3 = |4 \div 2 \times 3|$ $= 7 \times 3$ = 21 (c) $4 \times (7+3) - 48 \div 8 = 4 \times 10 - 48 \div 8$ = 40 - 48 ÷ 8 = 40 - 6 = 34 (d) $(19 + 17) \div 6 + 14 = 36 \div 6 + 14$ = 6 + 14= 20

> (e) $7 \times (14 + 26) \div 8 - 18 = 7 \times 40 \div 8 - 18$ = 280 ÷ 8 - 18 = 35 - 18 = 17

- (f) $(73 + 27) \times 3 |36 \div 4| = |00 \times 3 |36 \div 4| = 300 |36 \div 4| = 300 34| = 266$
- 3. (a) $8+7 \times 5 = 8+35$ = 43 $(8+7) \times 5 = 15 \times 5$ = 75 $8+7 \times 5 = (8+7) \times 5$ is not true.
 - (b) $5+3 \times 8 = 5+24$ = 29 $8 \times 8 = 64$ $5+3 \times 8 = 8 \times 8$ is not true.
 - (c) $6 \times 5 10 \div 2 = 30 10 \div 2$ = 30 - 5= 2530 - 5 = 25 $6 \times 5 - 10 \div 2 = 30 - 5 = 25$ is true.

4. (a)
$$(9+8) \times 6 = 17 \times 6$$

= 102
 $(9 \times 6) + (6 \times 6) = 54 + (6 \times 6)$
= 54 + 36
= 90
 $(9+8) \times 6 > (9 \times 6) + (6 \times 6)$

(b)
$$|0 \times (6 + 7) = |0 \times |3|$$

= |30
 $(|0 \times 6) + (|0 \times 7) = 60 + (|0 \times 7)$
= 60 + 70

$$= 130$$

10 × (6 + 7) = (10 × 6) + (10 × 7)

(c)
$$15 \times (10 - 8) = 15 \times 2$$

= 30
 $(15 \times 10) - (15 \times 2) = 150 - (15 \times 2)$
= 150 - 30
= 120
 $15 \times (10 - 8)$ (15 × 10) - (15 × 2)

- 5. (a) $(5+7) \div 2 = 6$ (b) $9 - (7-4) \times 2 = 3$ (c) $(4+5) \times 2 - 8 = 10$ (d) $3 \times (8 \div 2) - 5 = 7$
- **6.** (a) (40 + 35) ÷ 3
 - (b) (40 + 35) ÷ 3 = 75 ÷ 3 = 25
 There were 25 seashells in each box.

Exercise 2B	Multiply	by a	2-Digit	Number
	Fluently			

I.	I,323
	3 I,323 × 3 = <u>3,969</u>
	20 I,323 × 20 = <u>26,460</u>
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2.	(a) 32 × 3 = <u>4,092</u>
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(b) $398 \times 75 = 29,850$
	$ \begin{array}{r} 4 & 4 \\ 3 & 9 & 8 \\ \times & 7 & 5 \\ \overline{1} & 9 & 9 & 0 \\ 2 & 7 & 8 & 6 & 0 \\ 2 & 9 & 8 & 5 & 0 \end{array} $
	(c) $495 \times 47 = 23,265$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(d) $856 \times 76 = 65,056$
	$ \begin{array}{r} 3 & 3 \\ 8 & 5 & 6 \\ \times & 7 & 6 \\ \hline 5 & 1 & 3 & 6 \\ \hline 5 & 9 & 9 & 2 & 0 \\ \hline 6 & 5 & 0 & 5 & 6 \\ \end{array} $

- (e) $4,235 \times 36 = 152,460$

(f) $7,283 \times 78 = \frac{568,074}{568,074}$

1,2	.00	,	, 0			
		I	5	2		
		2	6	2		
		7	2	8	3	
×				7	8	
	5	8	2	6	4	
5	0	9	8	Ι	0	
5	6	8	0	7	4	

3. 200 ÷ 2 = 100 There are 100 even numbers from 2 to 200.

2 + 200 = 202 $100 \div 2 = 50$ There are 50 pairs of 202. $202 \times 50 = 10,100$ So, 2 + 4 + 6 + ... + 196 + 198 + 200 = 10,100.

4. (a) Yes, I agree with Linda.

 $(1,470 \times 60) + (3 \times 60)$ or the sum of 1,470 groups of 60 and 3 groups of 60 is the same as 1,473 groups of 60 or (1473×60) . Now, we have $(1,470 \times 60) + (3 \times 60) +$ $(1,473 \times 2) = (1,473 \times 60) + (1,473 \times 2)$. $(1,473 \times 60) + (1,473 \times 2)$ or the sum of 1,473 groups of 60 and 1,473 groups of 2 is 1,473 groups of 62.

(b) $1,470 \times 60 = 88,200$ $3 \times 60 = 180$ $1,473 \times 2 = 2,946$ $1,473 \times 62 = 88,200 + 180 + 2,946$ = 91,326

(e)	4,320 ÷ 60 = <u>72</u>	(j) 1,815 ÷ 20 = <u>90 R 15</u>
	$ \begin{array}{r} 7 & 2 \\ 60 \overline{\smash{\big)}4} & 3 & 2 & 0 \\ \underline{4} & 2 & 0 \\ \hline 1 & 2 & 0 \\ \underline{1} & 2 & 0 \\ \hline 0 & 0 \end{array} $	$ \begin{array}{r} 9 & 0 \\ 20 \\ 1 & 8 \\ 1 & 5 \\ \hline 0 \\ 1 & 5 \\ \hline 0 \\ 1 & 5 \\ \hline 0 \\ 1 & 5 \\ \hline \end{array} $
(f)	$3,440 \div 80 = \underline{43}$ $80)3440$ $\underline{320}$ 240 $\underline{240}$ 0	(k) $2,820 \div 40 = \frac{70 \text{ R } 20}{7 \text{ O } \text{ R } 20}$ 40)2820 280 20 20 20 20
(g)	$5,600 \div 90 = \underline{62 R 20}$ $6 2 R 20$ $90) 5 6 0 0$ $5 4 0$ $2 0 0$ $1 8 0$ $2 0$	(l) $3,780 \div 50 = \frac{75 \text{ R} 30}{7 5 \text{ R} 30}$ 50)3780 350 280 250 30
(h)	$9,280 \div 70 = \frac{132 \text{ R } 40}{1 3 2 \text{ R } 40}$ $70 9 2 8 0$ $7 0$	 (a) 370 ÷ 20 = 18 R 10 There were 18 cookie (b) 10 cookies were left u
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Exercise 2E Divide by a 2 I. (a) $98 \div 14 = \frac{7}{14 \sqrt{98}}$
(i)	$9,320 \div 30 = 310 R 20$ $3 1 0 R 20$ $30)9 3 2 0$ $9 0$ $3 2$ $3 0$ $2 0$ 0 $2 0$ $2 0$	$\frac{9 \ 8}{0}$ (b) $90 \div 18 = \underline{5}$ $18 \ 90$ $\frac{5}{9 \ 0}$ $\frac{9 \ 0}{0}$ (c) $96 \div 16 = \underline{6}$ $16 \ 96$

_			9	0	R 15
))	I	8	Ι	5	
<i>′</i>	Ι	8	0		_
-			Ι	5	_
				0	_
			Ι	5	
32	20	÷ 4	0	= _	70 R 20
			7	0	R 20
)	2	8	2	0	-
/	2	8	0		
			2	0	-
				0	
			2	0	-
78	0	÷ 5	0	=_	75 R 30
			7	5	R 30
)	3	7	8	0	-
/	3	5	0		
		2	8	0	-
		2	5	0	
			3	0	-

= 18 R 10 ere 18 cookies in each box.

es were left unpacked.

vide by a 2-Digit Number (I)

(a)
$$98 \div 14 = \frac{7}{14}$$

 $14\overline{\smash{\big)}98} = \frac{7}{98}$
 $98 \div 14 = \frac{7}{14}$
 $98 \div 14 = \frac{7}{14}$
 $98 \div 14 = \frac{7}{14}$
 $98 \div 18 = \frac{5}{16}$
 $18\overline{\smash{\big)}90} = \frac{5}{16}$
 $18\overline{\smash{\big)}90} = \frac{5}{16}$
 $90 \div 16 = \frac{6}{16}$
 $16\overline{\smash{\big)}96} = \frac{6}{96}$

(d)
$$90 \div 15 = 6$$

 $15) 9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 0$
 $9 2 \div 23 = 4$
 $23) 9 2$
 $9 2$
 0
(f) $76 \div 19 = 4$
 $19) 7 6$
 $7 6$
 $7 6$
 0
(g) $89 \div 12 = 7R5$
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 7$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 9$
 $8 4$
 5
 $12) 8 7$
 $8 4$
 5
 $13) 9 8 \div 13 = 7R7$
 $13) 9 8$
 $9 1$
 7
 $13) 9 8$
 $9 1$
 7
 7
 $13) 9 8$
 $9 1$
 7
 7
 $13) 9 8$
 $9 1$
 7
 7
 7
 $8 5$
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $17) 9 0$
 $8 5$
 5
 $7 2$

- (l) $99 \div 18 = 5R9$ 5R918999909909090
- 99 ÷ 16 = 6 R 3 Ms. Davies had 3 stickers left.

Exercise 2E Divide by a 2-Digit Number (2)

I.

$$\begin{array}{c}
2,976 \div 24 \\
= (\underline{2.400} \div 24) + (\underline{480} \div 24) + (\underline{96} \div 24) \\
= \underline{100} \div 20 \div 4 \\
= \underline{124} \\
2,976 \div 24 = \underline{124} \\
4,976 \div 24 = \underline{124} \\
4,9$$

6

	(d)	998 ÷ 37 = <u>26 R 36</u>
		$ \begin{array}{r} 2 & 6 \\ 7 & 7 \\ 7 & 4 \\ 7 & 4 \\ 2 & 5 & 8 \\ 2 & 2 & 2 \\ 3 & 6 \end{array} $
	(e)	994 ÷ 28 = <u>35 R I4</u>
		$ \begin{array}{r} 3 5 \\ 8 \\ 8 \\ 8 \\ 4 \\ \hline 1 5 4 \\ 1 4 \\ \hline 1 4 \\ \hline 1 4 \end{array} $
	(f)	3,II6 ÷ 38 = <u>82</u>
		$ \begin{array}{r} $
3.	(a)	<u></u>
		$2,652 \div 34 = \underline{78}$ $34) 2 6 5 2$ $\underline{2 3 8}$ $2 7 2$ $\underline{2 7 2}$ 0
	(b)	55 × <u>80</u> = 4,400
		$4,400 \div 55 = \underline{80}$ $55) 4 4 0 0$ $4 4 0$ $0 0$ $0 0$ $0 0$ 0

4. Yes, I agree with Jamie. 2,352 = 2,100 + 252

 $2,100 \div 42 = 50$ 252 ÷ 42 = 6 50 + 6 = 56So, 2,352 ÷ 42 = 2,100 ÷ 42 + 252 ÷ 42 = 50 + 6 = 56.

^{1,750 ÷ 50 = 35} There are 35 chairs in each row.

2. (a) I,296 cookies

l,296 ÷ 45 = 28 r 36

There are 28 containers of 45 cookies.

(b)

36 ?

36 ÷ 2 = 18 Each child receives I8 cookies.

880 + 1,080 = 1,960

There are I,960 envelopes altogether.

35 packets

1,960 ÷ 35 = 56 There are 56 envelopes in each packet.

38 + 29 = 67

3,216 ÷ 67 = 48 Mr. Vasquez sold 48 frying pans.

Exercise 2G Word Problems (I)

Ι.

I6 + 36 = 52 The cost of I adult and I child ticket was \$52.

 $9,724 \div 52 = 187$ There were 187 sets of I adult and I child. $2 \times 187 = 374$ There were 374 people at the theater.

in containers altogether.

l,204 ÷ l4 = 86

86 containers were used.

25 units = 2,400 I unit = 2,400 ÷ 25 = 96 I7 units = I7 × 96 = 1,632 Stores A and C had 1,632 toys. 1,632 ÷ 2 = 816 Store A had 816 toys in the end.

492 flowers were left at the florist.

- (a) 1,280 × 25 = 32,000
 \$32,000 was collected on Friday.
 830 × 18 = 14,940
 \$14,940 was collected on Sunday.
 32,000 + 14,940 = 46,940
 \$46,940 was collected on Friday and Sunday.
- (b) 93,050 46,940 = 46,110
 \$46,110 was collected on Saturday.
 46,110 ÷ 29 = 1,590
 1,590 people watched the play on Saturday.

3. Before:

18 × 48 = 864 There were 864 children.

After:

864 - 128 = 736
736 children remained.
736 ÷ 32 = 23
23 times as many children as adults remained at the carnival.

© 2022 Marshall Cavendish Education Pte Ltd

2. C

4. C

122

86

32,289

3. B

5.

6.

7.

8.

Additional Practice Grade 5A

 $(18 + 42) \div (3 \times 9 - 7) = 60 \div (3 \times 9 - 7)$

= 60 ÷ (27 - 7) = 60 ÷ 20 = 3

1,390 student T-shirts

I,390 × I8 = 25,020 All the student T-shirts will cost \$25,020. 3,072 + 25,020 = 28,092 All the T-shirts will cost the school \$28,092. \$28,092 < \$30,000 The school has enough money to pay for all the T-shirts.

 $10 + (5 \times 3) = 25$

A set of I ten-dollar bill and 3 five-dollar bills is \$25.

I,000 ÷ 25 = 40 There are 40 sets. 4 × 40 = I60 There are I60 bills in total. Jane is correct.

Chapter 3 ADDITION AND SUBTRACTION OF FRACTIONS

Exercise 3A Add and Subtract Unlike Fractions (I)

١.

2.

(d)
$$\frac{2}{9} + \frac{1}{2} = \boxed{\frac{4}{18}} + \boxed{\frac{9}{18}}$$

$$=$$
 $\frac{13}{18}$

(a)
$$\frac{7}{10} + \frac{3}{4} = \frac{14}{20} + \frac{15}{20}$$

 $= \frac{29}{20}$
 $= |\frac{9}{20}|$
(b) $\frac{4}{5} + \frac{2}{3} = \frac{12}{15} + \frac{10}{15}$
 $= \frac{22}{15}$
 $= |\frac{7}{15}|$
(c) $\frac{5}{8} + \frac{5}{6} = \frac{15}{24} + \frac{20}{24}$
 $= \frac{35}{24}$
 $= |\frac{11}{24}|$

(d)
$$\frac{5}{6} + \frac{3}{5} = \frac{25}{30} + \frac{18}{30}$$

 $= \frac{43}{30}$
 $= 1\frac{13}{30}$
(e) $\frac{2}{5} + \frac{3}{4} = \frac{8}{20} + \frac{15}{20}$
 $= \frac{23}{20}$
 $= 1\frac{3}{20}$
(f) $\frac{5}{6} + \frac{7}{9} = \frac{15}{18} + \frac{14}{18}$
 $= \frac{29}{18}$
 $= 1\frac{11}{18}$
(g) $\frac{1}{2} + \frac{3}{5} = \frac{5}{10} + \frac{6}{10}$
 $= \frac{11}{10}$
 $= 1\frac{1}{10}$
(h) $\frac{6}{7} + \frac{3}{4} = \frac{24}{28} + \frac{21}{28}$
 $= \frac{45}{28}$
 $= 1\frac{17}{28}$

3.

There are $I\frac{13}{20}$ liters of juice in both bottles.

Exercise 3A Add and Subtract Unlike Fractions (2)

I. (a) $\frac{4}{5} - \frac{3}{10} = \left| \frac{8}{10} \right| - \frac{3}{10}$ 5 10 <u>|</u> 2 = **(b)** $\frac{7}{12} - \frac{1}{3} = \frac{7}{12} - \frac{1}{12}$ 4 12 3 12 = | 4 = (c) $\frac{2}{3} - \frac{2}{5} =$ 10 15 6 15 4 15 =

Nelson spent $\frac{7}{20}$ of his money more on the pair of pants than on the T-shirt.

5.
$$\frac{3}{5} = \frac{24}{40}$$
 $\frac{7}{20} = \frac{14}{40}$ $\frac{7}{8} = \frac{35}{40}$

The heaviest parcel is Parcel C. The lightest parcel is Parcel B.

Add and Subtract Mixed Exercise 3B Numbers (I)

I. (a) $2\frac{1}{2} + 1\frac{2}{3} = 2 \frac{3}{6}$ 6 $= 3\frac{7}{6}$ $= 4\frac{1}{6}$

4.

(b)
$$2\frac{1}{2} + 1\frac{3}{5} = 2\frac{5}{10} + 2\frac{6}{10}$$

= $4\frac{11}{10}$
= $5\frac{1}{10}$

2. (a)
$$4\frac{4}{5} + 2\frac{2}{3} = 4$$
 $\boxed{\frac{12}{15}} + 2\frac{10}{15}$ $4\frac{12}{15}$
 $= \frac{6\frac{22}{15}}{7\frac{7}{15}} + 2\frac{10}{15}$
 $= 7\frac{7}{15}$
 $= 7\frac{7}{15}$

(b)
$$4\frac{7}{9} + 3\frac{5}{6} = 4$$
 $\frac{14}{18} + 3\frac{15}{18}$ $4\frac{14}{18}$
 $= 7\frac{29}{18} + 3\frac{15}{18}$
 $= 8\frac{11}{18}$ $7\frac{29}{18}$

Ш

18

8

@ 2022 Marshall Cavendish Education Pte Ltd

3.

$$= \frac{8}{18}$$

$$= \left[\left(\textbf{a} \right) \quad |\frac{5}{7} + 2\frac{1}{2} = |\frac{10}{14} + 2\frac{7}{14} \right]$$

$$= 3\frac{17}{14}$$

$$= 4\frac{3}{14}$$

$$(\textbf{b}) \quad 3\frac{2}{3} + 2\frac{3}{8} = 3\frac{16}{24} + 2\frac{9}{24}$$

$$= 5\frac{25}{24}$$

$$= 6\frac{1}{24}$$

(c)
$$3\frac{7}{10} + 2\frac{5}{8} = 3\frac{28}{40} + 2\frac{25}{40}$$

 $= 5\frac{53}{40}$
 $= 6\frac{13}{40}$
(d) $5\frac{7}{9} + 2\frac{7}{12} = 5\frac{28}{36} + 2\frac{21}{36}$
 $= 7\frac{49}{36}$
 $= 8\frac{13}{36}$
(e) $3\frac{9}{10} + 3\frac{5}{8} = 3\frac{36}{40} + 3\frac{25}{40}$
 $= 6\frac{61}{40}$
 $= 7\frac{21}{40}$
(f) $5\frac{3}{4} + 5\frac{3}{10} = 5\frac{15}{20} + 5\frac{6}{20}$
 $= 10\frac{21}{20}$
 $= 11\frac{1}{20}$

Mr. Benson had $4\frac{7}{20}$ liters of milk at first.

Helen used $14\frac{17}{40}$ feet of cloth in all.

Exercise 3B Add and Subtract Mixed Numbers (2)

I. (a) $3\frac{7}{10} - 1\frac{1}{2} = 3\frac{7}{10} - 1\frac{5}{10}$ = $2\frac{2}{10}$

$$= 2\frac{1}{5}$$

(a)
$$3\frac{2}{3} - 2\frac{1}{2} = 3\frac{4}{6} - 2\frac{3}{6}$$

 $= 1\frac{1}{6}$
(b) $4\frac{4}{5} - 2\frac{1}{2} = 4\frac{8}{10} - 2\frac{5}{10}$
 $= 2\frac{3}{10}$
(c) $5\frac{7}{8} - 3\frac{2}{3} = 5\frac{21}{24} - 3\frac{16}{24}$
 $= 2\frac{5}{24}$
(d) $4\frac{7}{24} - 1\frac{1}{6} = 4\frac{7}{24} - 1\frac{4}{24}$
 $= 3\frac{3}{24}$
(e) $6\frac{1}{10} - 2\frac{3}{8} = 6\frac{4}{40} - 2\frac{15}{40}$
 $= 5\frac{44}{40} - 2\frac{15}{40}$
 $= 3\frac{29}{40}$
(f) $3\frac{2}{7} - 2\frac{5}{6} = 3\frac{12}{42} - 2\frac{35}{42}$
 $= 2\frac{54}{42} - 2\frac{35}{42}$
 $= 1\frac{9}{42}$

3.

4.

$$2\frac{7}{10} - |\frac{3}{8}| = 2\frac{28}{40} - |\frac{15}{40}|$$
$$= |\frac{13}{40}|$$

Ms. Hanson bought I $\frac{13}{40}$ kilograms more sausages than ham.

5.

The mass of the pineapple is $I\frac{II}{20}$ kilograms.

 $I\frac{17}{20}$ kilograms of fruit were left.

 $= |\frac{17}{20}|$

 $5\frac{3}{40}$ meters of ribbon were left.

$$= 5\frac{23}{20}$$
$$= 6\frac{3}{20}$$

Both of them used $6\frac{3}{20}$ pounds of flour altogether.

Exercise 3C Word Problems (2)

١.

Fiona bought $I\frac{3}{20}$ pounds of brown rice.

$$2\frac{18}{20} + 1\frac{3}{20} = 3\frac{21}{20}$$
$$= 4\frac{1}{20}$$

Fiona bought $4\frac{1}{20}$ pounds of rice altogether.

Sam uses $4\frac{1}{10}$ meters of cloth to make the pair of pants.

$$2\frac{3}{5} + 4\frac{1}{10} = 2\frac{6}{10} + 4\frac{1}{10}$$
$$= 6\frac{7}{10}$$

3.

 $=4\frac{1}{10}$

Sam uses $6\frac{7}{10}$ meters of cloth in all.

l5 km

$$5\frac{3}{5} + 4\frac{5}{8} = 5\frac{24}{40} + 4\frac{25}{40}$$
$$= 9\frac{49}{40}$$
$$= 10\frac{9}{40}$$

Keith and Diana ran $10\frac{9}{40}$ kilometers in all.

$$15 - 10\frac{9}{40} = 14\frac{40}{40} - 10\frac{9}{40}$$
$$= 4\frac{31}{40}$$

Peter ran $4\frac{31}{40}$ kilometers.

$$2\frac{5}{6} - I\frac{2}{5} = 2\frac{25}{30} - I\frac{12}{30}$$
$$= I\frac{13}{30} h$$

Gordon spent I_{30}^{13} hours playing tennis.

$$2\frac{5}{6} + |\frac{13}{30}| = 2\frac{25}{30} + |\frac{13}{30}|$$
$$= 3\frac{38}{30}$$
$$= 4\frac{8}{30}$$
$$= 4\frac{4}{15}$$

Gordon spent $4\frac{4}{15}$ hours altogether on the two activities.

Chapter Practice

- I. D
- **2.** C
- **3.** C
- **4.** B

5.
$$8 - \frac{3}{5} = 7\frac{3}{5} - \frac{3}{5} = 7\frac{2}{5}$$

 $7\frac{2}{5} + 3\frac{3}{7} = 7\frac{14}{35} + 3\frac{15}{35}$
 $= 10\frac{29}{35}$
6. $3\frac{3}{4} - \frac{5}{7} = 3\frac{21}{28} - \frac{20}{28}$
 $= 3\frac{1}{28}$
 $5\frac{1}{2} + 3\frac{1}{28} = 5\frac{14}{28} + 3\frac{1}{28}$
 $= 8\frac{15}{28}$

Clinton jogged I 7 kilometers farther on Sunday.

Chef Kendrick bought $2\frac{1}{20}$ pounds of onions.

$$|\frac{3}{5} + 2\frac{15}{20} + 2\frac{1}{20} = |\frac{12}{20} + 2\frac{15}{20} + 2\frac{1}{20}$$
$$= 5\frac{28}{20}$$
$$= 6\frac{8}{20}$$
$$= 6\frac{2}{5}$$

Chef Kendrick bought $6\frac{2}{5}$ pounds of vegetables altogether.

(a) $6\frac{3}{10} - 1\frac{1}{6} = 6\frac{9}{30} - 1\frac{5}{30}$ = $5\frac{4}{30}$ = $5\frac{2}{15}$

The workers spent $5\frac{2}{15}$ hours renovating the house on the second day.

(b) $5\frac{2}{15} + \frac{2}{5} = 5\frac{2}{15} + \frac{6}{15}$ = $5\frac{8}{15}$

The workers spent $5\frac{8}{15}$ hours renovating the house on the third day.

Patricia does not have enough flour to bake the muffins.

$$12\frac{1}{4} - 8\frac{1}{40} = 12\frac{10}{40} - 8\frac{1}{40}$$
$$= 4\frac{9}{40}$$

Patricia needs another $4\frac{9}{40}$ kilograms of flour.

Patricia will need to buy I packet of 5-kilogram flour.

Chapter 4 MULTIPLICATION AND DIVISION OF FRACTIONS

Exercise 4A Product of Fractions and Whole Numbers (I)

Ι.

(a) Method I: Method 2: $\int \mathcal{O} \times \frac{3}{\mathcal{S}_1} = 2 \times 3$ $IO \times \frac{3}{5} = \frac{2}{\mathcal{S}_1} \times \frac{3}{\mathcal{S}_1}$ = 6 $= \frac{2 \times 3}{1}$ = 6

(b) Method I: Method 2: $\frac{3}{4} \times 16^{4} = 3 \times 4$ $\frac{3}{4} \times 16 = \frac{3 \times 16^{4}}{4}$ = 12 $= \frac{3 \times 4}{1}$

= 12

5. (a) When a number is multiplied by a fraction greater than I, the value is greater than the number. For example: When 40 is multiplied by a fraction greater than I, say, $\frac{8}{5}$, the answer is:

$$^{8}40 \times \frac{8}{8} = 8 \times 8 = 64$$

(b) When a number is multiplied by a fraction less than I, the value is less than the number. For example: When 40 is multiplied by a fraction less than I, say, $\frac{5}{8}$, the answer is:

$${}^{5}40 \times \frac{5}{8} = 5 \times 5 = 25$$

Exercise 4A Product of Fractions and Whole Numbers (2)

(a)
$$|\frac{1}{4} \times 6 = \frac{5}{4} \times 6$$

 $= \frac{5 \times \mathscr{B}^{3}}{\mathscr{K}_{2}}$
 $= \frac{15}{2}$
 $= 7\frac{1}{2}$
(b) $2\frac{2}{3} \times 3 = 2 \times 3 + \frac{2}{3} \times 3$
 $= 6 + 2$
 $= 8$

Ι.

2. (a)
$$27 \times \frac{5}{6} = \frac{927 \times 5}{\mathscr{B}_{2}}$$

 $= \frac{45}{2}$
 $= 22\frac{1}{2}$
(b) $30 \times \frac{3}{8} = \frac{15}{3}\frac{50 \times 3}{\mathscr{B}_{4}}$
 $= \frac{45}{4}$
 $= 11\frac{1}{4}$
(c) $20 \times \frac{8}{3} = \frac{20 \times 8}{3}$
 $= \frac{160}{3}$
 $= 53\frac{1}{3}$
(d) $24 \times \frac{7}{5} = \frac{24 \times 7}{5}$
 $= \frac{168}{5}$
 $= 333\frac{3}{5}$
3. (a) $39 \times \frac{2}{3} = \frac{13}{\mathscr{B}_{1}^{5} \times 2}$
 $= 26$
(b) $45 \times \frac{2}{5} = \frac{945 \times 2}{\mathscr{B}_{1}}$
 $= 18$
(c) $48 \times \frac{4}{3} = \frac{16}{4}\frac{45 \times 4}{\mathscr{A}_{1}}$
 $= 64$
(d) $63 \times \frac{11}{9} = \frac{7}{5}\frac{35 \times 11}{\mathscr{B}_{1}}$
 $= 77$
4. (a) > (b) <
(c) > (d) =

od I: 9 7	Method 2: $ 8 \times \frac{2}{7} $ $= 8 \times + 8 \times \frac{2}{7} $ $= 8 + \frac{36}{7} $ $= 8 + 5\frac{1}{7} $ $= 23\frac{1}{7} $
od I:	Method 2: $6 \times 3\frac{4}{9}$ $= 6 \times 3 + \cancel{9} \times \frac{4}{\cancel{9}_{3}}$ $= 18 + \frac{8}{3}$ $= 18 + 2\frac{2}{3}$ $= 20\frac{2}{3}$
bd I: $\frac{3}{5}$ $\frac{33}{0}$	Method 2: $4 \times 3\frac{3}{10}$ $= 4 \times 3 + 2 \times \frac{3}{10}$ $= 12 + \frac{6}{5}$ $= 12 + 1\frac{1}{5}$ $= 13\frac{1}{5}$
od I:	Method 2: $9 \times 2\frac{5}{6}$ $= 9 \times 2 + \frac{3}{9} \times \frac{5}{8_2}$ $= 18 + \frac{15}{2}$ $= 18 + 7\frac{1}{2}$ $= 25\frac{1}{2}$
ad I: $\frac{3}{7}$	Method 2: $2 \times \frac{6}{7}$ $= 2 \times +^{3}21 \times \frac{6}{7}$ $= 2 + 8$

© 2022 Marshall Cavendish Education Pte Ltd

= 39

- (h) Method I: $40 \times 2\frac{5}{8}$
 - $= \frac{5}{4} \times \frac{21}{8}$ $= \frac{5 \times 21}{1}$ = 105
- Method 2: $40 \times 2\frac{5}{8}$ $= 40 \times 2 + \frac{5}{4}0 \times \frac{5}{8}$ = 80 + 25= 105
- (i) Method I: $40 \times |\frac{3}{5}$ $= \frac{8}{40} \times \frac{8}{8}$ $= \frac{8 \times 8}{1}$ = 64

Method 2: $40 \times |\frac{3}{5}|$ $= 40 \times |+\frac{8}{4}0 \times \frac{3}{8}|$ = 40 + 24= 64

(j) Method I: Method 2: $36 \times |\frac{2}{9}$ $36 \times |\frac{2}{9}$ $= 36 \times |\frac{4}{9}$ $= 36 \times |\frac{4}{9}$ $= 36 \times |\frac{4}{9}$ $= 36 \times |\frac{4}{9}$ = 36 + 8 = 44

© 2022 Marshall Cavendish Education Pte Ltd

The pair of headphones cost \$42.

90 eggs were done sunny-side up.

Area of I unit = $\frac{1}{5} \times \frac{1}{8}$ = $\frac{1 \times 1}{5 \times 8}$

Area of the towel = I5 units

$$= \frac{3}{40} \times \frac{1}{40} \times \frac{1}{8}$$
$$= \frac{3}{8} \text{ square ft}$$

Method 2:

 $\frac{5}{8} \times \frac{3}{5} = \frac{1}{8} \times \frac{3}{8}$ $= \frac{1 \times 3}{8 \times 1}$ $= \frac{3}{8}$

The area of the towel is $\frac{3}{8}$ square foot.

3. (a)
$$\frac{5}{6} \times \frac{9}{10} = \frac{1}{2} \frac{8}{8} \times \frac{8}{18} \frac{3}{2}$$

 $= \frac{1 \times 3}{2 \times 2}$
 $= \frac{3}{4}$
(b) $\frac{7}{9} \times \frac{3}{14} = \frac{1}{3} \frac{7}{8} \times \frac{8}{18} \frac{1}{2}$
 $= \frac{1 \times 1}{3 \times 2}$
 $= \frac{1}{6}$
(c) $\frac{3}{5} \times \frac{5}{9} = \frac{1}{8} \times \frac{8}{8} \frac{1}{3}$
 $= \frac{1 \times 1}{1 \times 3}$
 $= \frac{1}{3}$
(d) $\frac{7}{8} \times \frac{4}{7} = \frac{1}{2} \frac{7}{8} \times \frac{8}{7} \frac{1}{1}$
 $= \frac{1 \times 1}{2 \times 1}$
 $= \frac{1}{2}$
(e) $\frac{8}{15} \times \frac{5}{12} = \frac{28}{3} \frac{8}{18} \times \frac{8}{12} \frac{1}{3}$
 $= \frac{2 \times 1}{3 \times 3}$
 $= \frac{2}{9}$

(f)
$$\frac{5}{9} \times \frac{3}{10} = \frac{18}{39} \times \frac{3}{10} = \frac{18}{39} \times \frac{3}{10} = \frac{1}{3} \times \frac{3}{10} = \frac{1}{3} \times \frac{3}{10} = \frac{1}{3} \times \frac{3}{10} = \frac{1}{3} \times \frac{3}{10} = \frac{1}{6}$$

(g) $\frac{5}{21} \times \frac{7}{10} = \frac{18}{321} \times \frac{3}{10} = \frac{1}{3} \times \frac{3}{10} = \frac{1}{6}$
(h) $\frac{7}{12} \times \frac{3}{7} = \frac{17}{412} \times \frac{3}{7} = \frac{1}{10} \times \frac{3}{10} \times \frac{3}{7} = \frac{1}{4} \times \frac{3}{10} = \frac{3}{8}$
(j) $\frac{9}{20} \times \frac{8}{15} = \frac{3}{5} \times \frac{3}{20} \times \frac{8}{10} \times \frac{3}{10} = \frac{3}{5} \times \frac{3}{5} = \frac{3}{5} \times \frac{3}{5} = \frac{6}{25}$

Exercise 4B Product of Fractions (2)

$$\mathbf{I.} \quad \frac{2}{5} \times \frac{3}{2} = \frac{\mathbf{I}}{\mathbf{Z}} \times \frac{3}{\mathbf{Z}_{1}}$$
$$= \frac{1 \times 3}{5 \times 1}$$
$$= \frac{3}{5}$$

2.
$$\frac{2}{3} \times \frac{5}{4} = \frac{1}{3} \times \frac{5}{\cancel{4}_2}$$
$$= \frac{1 \times 5}{3 \times 2}$$
$$= \frac{5}{6}$$

© 2022 Marshall Cavendish Education Pte Ltd

3. (a)
$$\frac{3}{4} \times \frac{8}{7} = \frac{3}{4} \times \frac{8^{7}}{7}^{2}$$

 $= \frac{3 \times 2^{7}}{1 \times 7}$
 $= \frac{6}{7}$
(b) $\frac{7}{3} \times \frac{10}{16} = \frac{12^{7}}{4} \times \frac{12^{7}}{16^{2}}$
 $= \frac{1 \times 3}{1 \times 2}$
 $= \frac{1 \times 3}{2}$
 $= \frac{1 \times 2}{2}$
(c) $\frac{2}{3} \times \frac{21}{16} = \frac{12^{7}}{4} \times \frac{27}{16}^{7}$
 $= \frac{1 \times 7}{1 \times 8}$
 $= \frac{2}{1}$
(d) $\frac{12}{5} \times \frac{5}{6} = \frac{12^{7}}{18} \times \frac{27}{16}^{7}$
 $= \frac{1 \times 7}{1 \times 8}$
 $= \frac{2}{1}$
(e) $\frac{9}{5} \times \frac{25}{16} = \frac{12^{7}}{18^{7}} \times \frac{27}{28^{2}}$
 $= \frac{2}{1}$
(f) $\frac{1}{6} \times \frac{27}{22} = \frac{14^{7}}{1 \times 8} \times \frac{27}{28}$
 $= \frac{2}{1}$
 $= 2 - \frac{1}{1}$
(g) $\frac{17}{12} \times \frac{9}{4} = \frac{17}{4} \times \frac{27}{8}^{7}$
 $= \frac{2}{1}$
 $= 2 - \frac{1}{1}$
(h) $\frac{7}{3} \times \frac{21}{6} = \frac{7}{18^{7}} \times \frac{27}{6}^{7}$
(b) $\frac{10}{9} \times \frac{6}{5} = \frac{28^{7}}{38^{7}} \times \frac{87^{7}}{8}^{7}$
 $= \frac{3 \times 2}{1 \times 5}$
 $= \frac{4}{3}$
 $= 1\frac{1}{3}$
(j) $\frac{10}{7} \times \frac{16}{9} = \frac{10}{7} \times \frac{14^{7}}{9}^{7}$
 $= \frac{2^{6}}{8}$
(j) $\frac{10}{7} \times \frac{16}{9} = \frac{10}{1 \times 7} \times \frac{14^{7}}{9}^{7}$
 $= \frac{2^{6}}{8}$
 $= 1\frac{1}{3}$
(j) $\frac{10}{7} \times \frac{16}{9} = \frac{10}{1 \times 7} \times \frac{14^{7}}{9}^{7}$

 $=\frac{13\times3}{4\times7}$ $=\frac{39}{28}$

 $=I\frac{II}{28}$

 $= \frac{1 \times 5}{1 \times 2}$ $= \frac{5}{2}$

 $=2\frac{1}{2}$

 $=\frac{1\times9}{2\times2}$

 $=\frac{9}{4}$ $=2\frac{1}{4}$

 $=\frac{17\times3}{4\times4}$

 $=\frac{51}{16}$

 $= 3\frac{3}{16}$

 $=\frac{7\times7}{1\times5}$

 $=\frac{49}{5}$

 $=9\frac{4}{5}$

 $= \frac{10 \times 2}{1 \times 9}$ $= \frac{20}{9}$

 $=2\frac{2}{9}$

© 2022 Marshall Cavendish Education Pte Ltd

(j)
$$\frac{13}{10} \times \frac{15}{8} = \frac{13}{210} \times \frac{15}{8}^{3}$$

 $= \frac{13 \times 3}{2 \times 8}$
 $= \frac{39}{16}$
 $= 2\frac{7}{16}$

Exercise 4B Product of Fractions (3)

 $2\frac{3}{10}$ meters of ribbon were used.

 $\frac{7}{12}$ of the magnetic building tiles are given to Joyce.

3.

$$\frac{12}{5} \times \frac{9}{2} = \frac{12}{5} \times \frac{9}{5} = \frac{54}{5}$$
$$= 10\frac{4}{5}$$

The area of the tablecloth is $10\frac{4}{5}$ square feet.

•	Method I:	Method 2:		E × 2
	Multiply the side lengths.	Find the area by tiling.		$=\frac{5\times 3}{2\times 1}$ $=\frac{15}{2}$
	$2\frac{1}{2} \times \frac{3}{4} = \frac{5}{2} \times \frac{7}{4}$	Area of I unit = $\frac{1}{4} \times \frac{1}{4}$		$=7\frac{1}{2}$
	$=\frac{35}{8}$	= <mark> </mark> square m		$3\frac{3}{2}$ $2\frac{2}{33}$
	= 4 $rac{3}{8}$ square m	Area of the curtain = 70 × <u>1</u>	(C)	$3\frac{10}{10} \times 2\frac{19}{9} - \frac{1}{10} \times \frac{11}{10} \times 11$
		$=\frac{\frac{70}{35}}{\frac{35}{8}}^{35}$ $=\frac{35}{8}$		$=\frac{22}{3}$ $=7\frac{1}{3}$
		= 4 ³ / ₈ square m		2
	The area of the rectan	gular curtain	(d)	$1\frac{5}{7} \times 2\frac{1}{4} = \frac{3}{7} \times \frac{9}{4}$
	is $4\frac{3}{8}$ square meters.			$=\frac{3\times9}{7\times1}$
2.	Method I:			$=\frac{27}{7}$
	$2\frac{1}{4} \times \frac{3}{5} = (2 \times) + (2 \times \frac{3}{5})$	$+(\frac{1}{4} \times 1) + (\frac{1}{4} \times \frac{3}{5})$		$= 3\frac{6}{7}$
	$= 2 + \frac{6}{5} + \frac{1}{4} + \frac{3}{20}$			$1\frac{5}{2} \times 3\frac{3}{2} - \frac{2}{2} \times 3$
	$= 2 + \left \frac{4}{20} + \frac{5}{20} + \frac{5}{2} \right $	0	(6)	16 7 2 16 .
	$=3\frac{12}{20}$			$=\frac{3\times 3}{2\times 1}$ $=\frac{9}{2}$
	$=3\frac{5}{5}$			2
	Method 2:			$-4\frac{1}{2}$
	$2\frac{1}{4} \times \frac{3}{5} = \frac{9}{\cancel{4}} \times \frac{\cancel{8}}{5}^2$		(f)	$ \frac{7}{15} \times \frac{7}{8} = \frac{22}{\sqrt{2}} \times \frac{1}{\sqrt{2}}$
	$=\frac{9\times2}{1\times5}$			$=\frac{ 1\times 1 }{ 1\times 4 }$
	-5 = $3\frac{3}{5}$			$=\frac{11}{4}$
	3			$=2\frac{3}{4}$
3.	(a) $3\frac{3}{4} \times 2\frac{4}{5} = \frac{3}{2}\frac{1}{4}\times \frac{1}{8}$		(g)	$2\frac{2}{3} \times \frac{7}{8} = \frac{1}{8} \times \frac{1}{8}$
	$=\frac{3\times7}{2\times1}$			$=\frac{1\times5}{1\times1}$
	$=\frac{1}{2}$			= 5

(h)
$$|\frac{5}{9} \times 2\frac{4}{7} = \frac{2}{1}\frac{14}{8} \times \frac{18}{7}^{2}$$

 $= \frac{2 \times 2}{1 \times 1}$
 $= 4$
(i) $3\frac{1}{3} \times 4\frac{1}{5} = \frac{2}{1}\frac{14}{8} \times \frac{24^{7}}{8}^{7}$
 $= \frac{2 \times 7}{1 \times 1}$
 $= 14$
(j) $2\frac{1}{12} \times |\frac{1}{15} = \frac{5}{3}\frac{28}{12} \times \frac{18}{8}^{4}$
 $= \frac{5 \times 4}{3 \times 3}$
 $= \frac{20}{9}$
 $= 2\frac{2}{9}$
Exercise 4D Fraction as Division
I. (a) $2 \div 5 = \frac{2}{5}$ (b) $5 \div 2 = \frac{5}{2}$
 $= 2\frac{1}{2}$
2. (a) $5 \div 12 = \frac{5}{12}$ (b) $6 \div 9 = \frac{6}{9}$
 $= \frac{2}{3}$
(c) $10 \div 12 = \frac{10}{12}$ (d) $12 \div 15 = \frac{12}{15}$
 $= \frac{5}{6}$ (f) $38 \div 4 = \frac{38}{4}$
 $= 8\frac{4}{6}$ $= 9\frac{2}{4}$
 $= 8\frac{2}{3}$ $= 9\frac{1}{2}$
(g) $42 \div 8 = \frac{42}{8}$ (h) $48 \div 9 = \frac{48}{9}$
 $= 5\frac{2}{8}$ $= 5\frac{3}{9}$

28 Answers

$$\frac{2}{5} \div 4 = \frac{12}{5} \times \frac{1}{42}$$
$$= \frac{1 \times 1}{5 \times 2}$$
$$= \frac{1}{10}$$

 $\frac{1}{10}$ pound of peanuts was on each plate.

$$\begin{array}{rcl} & & \frac{2}{5} \div 8 = \frac{12}{5} \times \frac{1}{84} \\ & & = \frac{1 \times 1}{5 \times 4} \\ & & = \frac{1}{20} \end{array}$$

Ms. Kirk used $\frac{1}{20}$ kilogram of flour for each cupcake.

$$\frac{9}{12} \text{ is equal to } \frac{3}{4}.$$
$$\frac{9}{12} \div 6 = \frac{1}{8} \frac{\cancel{3}}{\cancel{4}} \times \frac{1}{\cancel{8}}_{2}$$
$$= \frac{1}{8}$$

Each child will get $\frac{1}{8}$ of the pizza.

Exercise 4E Divide a Fraction by a Whole Number (3)

The length of each piece of ribbon is $\frac{3}{20}$ yard.

Each kitten got $\frac{1}{16}$ pint of milk.

Exercise 4F Divide a Whole Number by a Unit Fraction (I)

$$5 \div \frac{1}{5} = 5 \times 5$$

= 25

L

4.

There are 25 fifths in 5 wholes.

2.
$$4 \div \frac{1}{6} = 4 \times 6$$

There are 24 sixths in 4 wholes.

3.
$$3 \div \frac{1}{4} = 3 \times 4$$

Thomas can tie I2 identical gifts.

Faith will use up all the flour in I6 days.

David gets I4 pieces of ribbon.

 $5 \div \frac{1}{4} = 5 \times 4$ = 20

2.

Mr. White can make 20 similar batches of pancakes with 5 gallons of milk.

$$2 \div \frac{1}{4} = 2 \times 4$$
$$= 8$$

There are 8 friends.

Chapter Practice

- I. C
- **2.** B
- **3.** C
- **4.** B
- **5.** A

$$\frac{1}{3} = 2 \times 3$$

Mr. Handy has 6 children.

$$\frac{7}{8} \times \frac{1}{2} = \frac{7}{16}$$

II.

The area of the piece of paper is $\frac{7}{16}$ square foot.

© 2022 Marshall Cavendish Education Pte Ltd

Ms. Lindsey needs IO loaves of bread.

Each child gets $\frac{3}{10}$ liter of yogurt.

 $3 \div \frac{1}{3} = 3 \times 3$ = 9

Florence makes 9 servings of blueberry smoothie.

Ivan needs $7\frac{1}{2}$ cups of blueberry.

$$\frac{2}{1.8} \times 250 = 100$$

13.

100 small boxes are needed each day.

$$\frac{3}{100} \times 250 = 75$$

each day.

75 medium boxes are needed each day.

250 - 100 - 75 = 75

75 large boxes are needed each day.

100 × 15 = 1,500 1,500 prawns are packed in small boxes each day.

75 × 20 = 1,500 1,500 prawns are packed in medium boxes

75 × 30 = 2,250 2,250 prawns are packed in large boxes each day.

1,500 + 1,500 + 2,250 = 5,250 5,250 prawns are packed each day.

Chapter 5 WORD PROBLEMS: THE FOUR OPERATIONS OF **FRACTIONS**

Exercise 5A Word Problems (I)

a)
$$2\frac{3}{4} - 1\frac{2}{5} = 2\frac{13}{20} - 1\frac{3}{20}$$
$$= 1\frac{7}{20}$$

The length of each smaller piece of Rope Q is $I\frac{7}{20}$ meters.

(b)
$$|\frac{7}{20} \times 4 = \frac{27}{20} \times 4$$

 $= \frac{27}{5}$
 $= 5\frac{2}{5}$

The length of Rope Q is $5\frac{2}{5}$ meters.

2.

١.

 $\frac{7}{10} \div 7 = \frac{7}{10} \times \frac{1}{7}$

 $=\frac{1}{10}$ Ms. Hernandez's kitten drank $\frac{1}{10}$ liter of milk each day.

The baker had $5\frac{17}{20}$ kilograms of walnuts altogether.

 $I\frac{19}{20}$ kilograms of walnuts were in each container.

 $\frac{1}{4} \times 252 = 63$

Nicole gives 63 stamps to her brother.

3. $\frac{1}{4} = \frac{3}{12}$ $\frac{2}{3} = \frac{8}{12}$

There are I2 units of flour if the container is full with flour.

© 2022 Marshall Cavendish Education Pte Ltd

I. $I - \frac{2}{5} = \frac{5}{5} - \frac{2}{5}$ $= \frac{3}{5}$

 $\frac{3}{5}$ of the bread buns were left after giving some to QQ home.

Sam gave I44 bread buns to QQ Home.

(b) 15 units = 15 × 24 = 360

Baker Sam made 360 bread buns.

Steve received I80 messages in all today.

 $\frac{1}{2}$ of the balls are green and yellow.

5 units = 45 I unit = 45 ÷ 5 = 9 18 units = 18 × 9 = 162 There are 162 balls altogether.

4.
$$I - \frac{2}{3} = \frac{1}{3}$$

Victoria had $\frac{1}{3}$ of her money left after spending on the cake and some pies.

Victoria had \$96 at first.

$$\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$$

Victoria spent $\frac{1}{2}$ of her money on the cake.

$$\frac{1}{2} \times \$96 = \$48$$

The cake cost \$48.

Chapter Practice

- С ١.
- 2. А

3. А **4.** $|-\frac{1}{5}=\frac{4}{5}$

 $\frac{4}{5}$ of the fruit were pears and mangoes.

IO units = 30 l unit = 30 ÷ 10 = 3 Laila bought 3 mangoes.

 $\frac{2}{5}$ liter of juice is in each cup.

6. $I - \frac{1}{5} - \frac{1}{2} = \frac{10}{10} - \frac{2}{10} - \frac{5}{10}$ = $\frac{3}{10}$

Angela gave $\frac{3}{10}$ of her beads to Santiago.

3 units = 78 1 unit = 78 ÷ 3 = 26 5 units = 5 × 26 = 130 Angela had 130 beads left.

7. $I - \frac{3}{8} = \frac{5}{8}$

Vivian had $\frac{5}{8}$ of his savings left after spending on a racket.

left early

8.

$$\frac{1}{8} \times \frac{4}{7} = \frac{1}{14}$$

 $\frac{1}{14}$ of the total number of people who left early were adults.

total number of children

left early

$\frac{1}{6} \times \frac{3}{7} = \frac{1}{14}$

 $\frac{1}{4}$ of the total number of people who left early were children.

$$| -\frac{1}{14} - \frac{1}{14} = \frac{12}{14} = \frac{6}{7}$$

 $\frac{6}{7}$ of the people remained at the camp.

$$84 \times \frac{6}{7} = 72$$

72 people remained at the camp.

9. Both had IO units of stickers at first. Eileen gave away $\frac{2}{5} = \frac{4}{10}$ of her stickers.

The mass of the empty box is $\frac{37}{100}$ pound.

Chapter 6 DECIMALS

Exe	ercis	e 6A Thousandths (I)
I.	(a)	2.654 (b) 6.087
2.	(a)	0.856 (b) 0.056
	(c)	8.609 (d) 2.705
3.	(a)	4.563 = 4 + 0.5 + 0.06 + 0.003
	(b)	9.624 = 9 + <u>0.6</u> + <u>0.02</u> + <u>0.004</u>
	(c)	7.805 = 7 + <u>0.8</u> + <u>0.005</u>
	(d)	2.049 = + + +
4.	(a)	$6 + \boxed{\frac{3}{10}} + \boxed{\frac{5}{100}} + \boxed{\frac{9}{1,000}} = 6 \boxed{\frac{359}{1,000}}$
	(b)	$8 + \boxed{\frac{2}{10}} + \boxed{\frac{7}{100}} + \boxed{\frac{5}{1,000}} = 8 \boxed{\frac{275}{1,000}}$

	(c)	$3 + \boxed{\frac{6}{10}} + \boxed{\frac{2}{10}}$	2 +	$\frac{8}{1,000} = 3 \frac{628}{1,000}$
	(d)	40 + 9 + 4	+ 0	$\frac{1}{1000} + \frac{8}{1000} = 49 \frac{408}{1000}$
	(e)	70 + 5 + 0	+ 3	$\frac{1}{100} + \frac{2}{1000} = 75 \boxed{\frac{32}{1000}}$
5.	(a)	0.005	(b)	0.603
	(c)	0.078	(d)	3.256
	(e)	2.508	(f)	7.009
6.	(a)	50; tens	(b)	6; ones
	(c)	0.2; tenths	(d)	0.04; hundredths
	(e)	0.009; thousan	dths	
7.	(a)	4.835	(b)	12.029
	(c)	7.906	(d)	15.642
	(e)	280.305	(f)	91.083
	(g)	120.578		
8.	(a)	0.05	(b)	0.002
	(c)	0.09	(d)	0.2
	(e)	0.005		
9.	_3	8.007	3.	028
↓ 3	.002	3.01 3 .02 3.013	+++ ∦ + 2	3.03 3.04 <u>3.034</u>

Ex	ercis	e6A Tho	ousandth	s (2)		Ex	ercis	e 6A	Thousa	ndth	s (3)
I.	(a)	7.318 7.32	5			١.	(a)	0.189		(b)	0.027
-	 	↓ ↓ ·····			·· ! ····►		(c)	5.003	3	(d)	9.007
7	.31	7.32	7.33	7.34	7.35		(e)	8.079)	(f)	12.048
		The missin	g decimal	s are <u>7.31</u>	8		(g)	21.453	3	(h)	15.136
	(6)	and <u>7.32</u>	<u>.</u> .	7.325		2.	(a)	0.045	$5 = \frac{45}{1,000}$	(b)	0.088
	(D)		s less that	п <u></u> .					$=\frac{9}{200}$:
2.	(a)	28.456	28.46	28.46	<u>58</u>		(c)	0.075	$5 = \frac{75}{1,000}$	(d)	0.365 :
	28.45		28.46	:	28.47				$=\frac{3}{40}$:
		The missin	g decimal	s are <u>28.4</u>	<u>56 ,</u>		(e)	2.625	$=2\frac{625}{1,000}$	(f)	5.048
		,	and <u>20.4</u>	.00					$=2\frac{5}{8}$:
	(b)		s greater <u>28.468</u> .	than <u>28.4</u>	<u>56</u> but		(g)	3.126	= 3 ¹²⁶ 1,000	(h)	16.092
3	3.0	054 _{is are}	ater than	3.045					$=3\frac{63}{500}$		
0.		is gi e				_		_ 4	. 8		
4.	(a)	< (b)	> (c)	< (d)	<	3.	(a)	$3\frac{-}{5} = 3$	310	(b)	$8{2} = 8{1}$
5.	(a)	0.902,	0.092, 9	.002				= 3	3.8		= 8.
	(b)	3.103, (3.0	031, 3.3	0			(c)	$10\frac{3}{4} =$	$10\frac{75}{100}$	(d)	$16\frac{9}{20} = 1$
6		0.026	062 0	602				=	10.75		=
0.	(a)	0.930, 0	.903, 0.	.093			(e)	$24\frac{18}{25}$	$=24\frac{72}{100}$	(f)	$20\frac{148}{200}$
	(b)	8.927, 8.	.792, (8.9	972					= 24.72		
7.	(a)		0.075	0.507			(g)	9 64 125 =	9 <u>512</u> 1,000	(h)	$30\frac{52}{250}$
		least		greatest				=	9.512		
	(b)	5.064_,	5.406	5.604			(i)	14 <u>125</u> :	$= 14 \frac{96}{1000}$	(j)	$29\frac{21}{250}$
		least		greatest				:	= 14.096		200
8.	(a)	0.983_,	0.938	,,	0.398						
		greatest			least	Ex	ercis	e 6B	Roundi	ng De	ecimals
	(b)	6.875	6.857	,6.785,	6.758	I.	(a)	10		(b)	6.08
		greatest			least	•	101				
						۷.	131				

a)	$0.045 = \frac{45}{1,000}$	(b)	$0.088 = \frac{88}{1,000}$
	$=\frac{9}{200}$		$=\frac{11}{125}$
c)	$0.075 = \frac{75}{1,000}$	(d)	$0.365 = \frac{365}{1,000}$
	$=\frac{3}{40}$		$=\frac{73}{200}$
e)	$2.625 = 2\frac{625}{1,000}$	(f)	$5.048 = 5\frac{48}{1,000}$
	$=2\frac{5}{8}$		$=5\frac{6}{125}$
g)	$3.126 = 3\frac{126}{1,000}$	(h)	$16.092 = 16\frac{92}{1,000}$
	$=3\frac{63}{500}$		$= 16\frac{23}{250}$
a)	$3\frac{4}{5} = 3\frac{8}{10}$	(b)	$8\frac{1}{2} = 8\frac{5}{10}$
	= 3.8		= 8.5
c)	$10\frac{3}{4} = 10\frac{75}{100}$	(d)	$16\frac{9}{20} = 16\frac{45}{100}$
	= 10.75		= 16.45
e)	$24\frac{18}{25} = 24\frac{72}{100}$	(f)	$20\frac{148}{200} = 20\frac{74}{100}$
	= 24.72		= 20.74
g)	$9\frac{64}{125} = 9\frac{512}{1,000}$	(h)	$30\frac{52}{250} = 30\frac{208}{1,000}$
	= 9.512		= 30.208
i)	$ 4\frac{ 2}{ 25} = 4\frac{96}{ ,000}$	(j)	$29\frac{21}{250} = 29\frac{84}{1,000}$
	= 14.096		= 29.084

- **3.** 2.7
- **4.** 3.46
- **5.** I.O

6.

	Desimal	Round to the nearest			
	Decimal	whole number	tenth	hundredth	
(a)	1.284	I	1.3	1.28	
(b)	8.736	9	8.7	8.74	
(c)	19.459	19	19.5	19.46	
(d)	15.396	15	15.4	15.40	
(e)	23.994	24	24.0	23.99	

7. (a)

Chapter Practice

В

Ι.

The least possible decimal is 24.995.

- **6.** (a) 8.336 (b) 8.345
- 7. 8 tenths are greater than 6 tenths. So, 5.826 is greater than 5.682.

The order should be: 5.862, 5.826, 5.682

5.862	5.826	5.682
greatest	,	least

8.

Ones	Tenths	Hundredths	Thousandths
4	. 3	9	7
4	. 7	9	3
3	. 9	7	4
4	. 7	3	9

First, I compare the digit in the ones place. 3 ones are less than 4 ones. So, 3.974 is the least decimal.

Next, I compare digit in the tenths place for 4.397, 4.793, and 4.739. 7 tenths are more than 3 tenths. So, 4.397 is the second least decimal.

Next, I compare digit in the hundredths place for 4.793 and 4.739. 9 hundredths are more than 3 hundredths. So, the greatest decimal is 4.793.

The order is:

3.974	4.397	4.739	4.793
least			greatest

9. No, I do not agree with Benedict. In a swimming competition, the fastest swimmer who takes the least time is the winner.

1.89	1.95	1.98	2.05	2.08
least	, -	,		greatest

Benedict takes the longest time to complete the race. Thus he comes in last.

Daniel comes in first. The results for the swimming competition are:

Daniel	Calvin	Adam	Gary	Benedict
lst	2nd	3rd	4th	5th