Chapter 2: Fractions

Multiplication of Fractions

2.1A Multiplication of a Proper Fraction by a Whole Number

Basics

1.

Method 1
1 unit $=\frac{1}{5}$
3 units $=3 \times \frac{1}{5}=\frac{3}{5}$
Method 2
$3 \times \frac{1}{5}=\frac{3 \times 1}{5}=\frac{3}{5}$
2.

Method 1
From the model,
1 unit $=\frac{3}{4}$
2 units $=2 \times \frac{3}{4}=\frac{6}{4}=1 \frac{1}{2}$
Method 2

$$
\frac{3}{4} \times 2=\frac{3 \times 2}{4}=\frac{6}{4}=1 \frac{1}{2}
$$

3.

From the model,
1 unit $=\frac{3}{4} \mathrm{c}$
3 units $=\frac{3}{4} \mathrm{c} \times 3=\frac{3 \times 3}{4} \mathrm{c}=\frac{9}{4} \mathrm{c}=2 \frac{1}{4} \mathrm{c}$
May used $2 \frac{1}{4}$ c of raisins.
4. $\frac{2}{5} \mathrm{~m}$

From the model,
1 unit $=\frac{2}{5} \mathrm{~m}$
6 units $=\frac{2}{5} \mathrm{~m} \times 6=\frac{2 \times 6}{5} \mathrm{~m}=\frac{12}{5} \mathrm{~m}$
$=2 \frac{2}{5} \mathrm{~m}$
Hector needs $2 \frac{2}{5} \mathrm{~m}$ of wood.

Practice

5. $48 \times \frac{2}{3} \mathrm{mi}=\frac{48 \times 2}{3} \mathrm{mi}=16 \times 2 \mathrm{mi}=32 \mathrm{mi}$ Julia walked 32 miles.

2.1C Multiplication of an Improper
 Fraction or a Mixed Number by a Whole Number

Basics

15. (a) $\frac{7}{5} \times 3=\frac{7 \times 3}{5}=\frac{21}{5}=4 \frac{1}{5}$
(b) $\frac{31}{2} \times y^{1}=\frac{31}{2}=15 \frac{1}{2}$
(c) $\mathrm{X}^{1} \times \frac{17}{\mathrm{R}_{2}}=\frac{17}{2}=8 \frac{1}{2}$
(d) $12^{3} \times \frac{21}{2}=\frac{3 \times 21}{10}=\frac{63}{2}=31 \frac{1}{2}$

Practice

16. $4 \times 2 \frac{2}{3} \mathrm{~kg}=4 \times \frac{8}{3} \mathrm{~kg}=\frac{32}{3} \mathrm{~kg}=10 \frac{2}{3} \mathrm{~kg}$ The combined weight of the packages that Wyatt wants to mail is $10 \frac{2}{3} \mathrm{~kg}$.
$17.12 \times 2 \frac{3}{8}$ oz
$=\mathrm{N}^{3} \times \frac{19}{2} \mathrm{oz}=\frac{3 \times 9}{2} \mathrm{oz}=\frac{57}{2} \mathrm{oz}=28 \frac{1}{2} \mathrm{oz}$
Linda bought $28 \frac{1}{2}$ oz of seeds.
17. Method 1

$$
\begin{aligned}
& 3 \times 1 \frac{1}{4} l b=3 \times \frac{5}{4} \mathrm{lb}=\frac{3 \times 5}{4} \mathrm{lb}=\frac{15}{4} \mathrm{lb} \\
& \mathrm{X}^{1} \times \frac{15}{2} \mathrm{lb}=\frac{15}{2} \mathrm{lb}=7 \frac{1}{2} \mathrm{lb}
\end{aligned}
$$

Method 2
Cabbage $1 \frac{1}{4} \mathrm{lb}$

Melon

Pumpkin

From the model,
1 unit $=1 \frac{1}{4} \mathrm{lb}$
6 units $\longrightarrow 6 \times 1 \frac{1}{4} \mathrm{lb}=7 \frac{1}{2} \mathrm{lb}$
The pumpkin weighs $7 \frac{1}{2} \mathrm{lb}$.

Challenge

19. Method 1

Baseball cards:
$\frac{5}{3} \times 45=\frac{5 \times 45}{3}=\frac{225}{3}=75$ cards
Football cards and baseball cards:
$45+75=120$ cards
Hockey cards:
$\frac{3}{4} \times 120=\frac{3 \times 120}{3}=\frac{360}{4}=90 \mathrm{cards}$
Total cards:
$120+90=210$ cards
Method 2
football

baseball

hockey

$\frac{3}{4}$ as many hockey cards means $\frac{3}{4}$ of 8 units, which is 6 units.

From the model,
3 units = 45 cards
1 unit $\longrightarrow \frac{45}{3}=15$ cards
14 units $\longrightarrow 14 \times 15=210$ cards
There are 210 cards in Josef's collection.
6.

Paula
 $\$ 312$
Kawai \square
From the model,
13 units $\longrightarrow \$ 312$
1 unit $\longrightarrow \frac{\$ 312}{13}=\$ 24$
6 units $\longrightarrow 6 \times \$ 24=\$ 144$
7 units $\longrightarrow 7 \times \$ 24=\$ 168$
Paula got $\$ 144$. Kawai got $\$ 168$.
7. $12: 2: 1: 16$
8. (a) $5: 9$
(b)

Method 1
From the model,
9 units $\longrightarrow 180 \mathrm{~cm}$
1 unit $\longrightarrow \frac{180 \mathrm{~cm}}{9}=20 \mathrm{~cm}$
5 units $\longrightarrow 5 \times 20 \mathrm{~cm}=100 \mathrm{~cm}$
Method 2
Find $\frac{5}{9}$ of 180 .

$$
\frac{5}{1} \times 180_{1}^{20} \mathrm{~cm}=100 \mathrm{~cm}
$$

Mr. Nakamura's granddaughter is 100 cm (or 1 m) tall.
9. Santiago's cards Amanda's cards

From the model,
7 units $\longrightarrow 42$ cards
1 unit $\longrightarrow \frac{42}{7}=6$ cards
Amanda has 2 units of hockey cards and 3 units of baseball cards. Amanda has 6 more baseball than hockey cards.

Challenge

10. (a) Eli's age

Jamal's age \square
Avery's age

From the model, Eli's age to Avery's age is $\frac{3}{6}=\frac{1}{2}$.
(b) From the model, 4 units $\longrightarrow 28$ years
1 unit $\longrightarrow \frac{28 \text { years }}{4}=7$ years
3 units $\longrightarrow 3 \times 7$ years $=21$ years
Avery is 21 years older than Eli.
11.

From the model,
cruiser bikes $\longrightarrow 5$ units
mountain bikes $\longrightarrow 4$ units
5 units -4 units $=1$ unit
1 unit $\longrightarrow 15$ bikes
9 units $\longrightarrow 9 \times 15$ bikes $=135$ bikes
There are 135 road bikes in the bicycle shop.
12. Jenna's beads

Koni's beads

$3: 5=6: 10$
The fraction is $\frac{5}{11}$.

7.2 Percentage of a Quantity

Basics

1. (a) Method 1
$100 \% \longrightarrow \$ 90$
$10 \% \longrightarrow \$ 90 \div 10=\$ 9$
$60 \% \longrightarrow 6 \times \$ 9=\$ 54$
Method 2
60% of $\$ 90$
$=\frac{60}{100} \times \$ 90$
$=\$ 54$
60% of $\$ 90$ is $\$ 54$.
(b) Method 1

$$
\begin{aligned}
& 100 \% \longrightarrow \$ 90 \\
& 25 \% \longrightarrow \$ 90 \div 4=\$ 22.50 \\
& 75 \% \longrightarrow 3 \times \$ 22.50=\$ 67.50
\end{aligned}
$$

Method 2
75% of $\$ 90$
$=\frac{75}{100} \times \$ 90$
$=\$ 67.50$
75% of $\$ 90$ is $\$ 67.50$.
(c) Method 1
$100 \% \longrightarrow \$ 90$
$5 \% \longrightarrow \$ 90 \div 20=\$ 4.50$
Method 2
5% of $\$ 90$
$=\frac{5}{100} \times \$ 90$
$=\$ 4.50$
5% of $\$ 90$ is $\$ 4.50$.
(d) Method 1
$100 \% \longrightarrow 180$ in
$25 \% \longrightarrow 180$ in $\div 4=45$ in
Method 2
25% of 180 in
$=\frac{25}{100} \times 180$ in $=45$ in
25% of 180 inches is 45 inches.
(e) $33 \frac{1}{3} \%=\frac{\frac{100}{3}}{100}$

$$
=\frac{100}{3} \times \frac{1}{100}
$$

$$
=\frac{1}{3}
$$

$33 \frac{1}{3} \%$ of $105 \mathrm{~km}=\frac{1}{3}$ of 105 km

$$
=\frac{1}{3} \times 105 \mathrm{~km}
$$

$$
=35 \mathrm{~km}
$$

$33 \frac{1}{3} \%$ of 105 km is 35 km .
(f) Method 1

$$
\begin{aligned}
& 100 \% \longrightarrow 184 \mathrm{~cm} \\
& 25 \% \longrightarrow 184 \mathrm{~cm} \div 4=46 \mathrm{~cm} \\
& 75 \% \longrightarrow 3 \times 46 \mathrm{~cm}=138 \mathrm{~cm}
\end{aligned}
$$

Method 2
75% of 184 cm
$=\frac{75}{100} \times 184 \mathrm{~cm}$
$=138 \mathrm{~cm}$
75% of 184 cm is 138 cm .
(g) Method 1

$$
\begin{aligned}
& 100 \% \longrightarrow \$ 200 \\
& 1 \% \longrightarrow \$ 200 \div 100=\$ 2 \\
& 8 \frac{1}{2} \% \longrightarrow 8 \frac{1}{2} \times \$ 2=\$ 17
\end{aligned}
$$

Method 2

$$
\begin{aligned}
& 8 \frac{1}{2} \%=\frac{8.5}{100} \times \$ 200=\$ 17 \\
& 8 \frac{1}{2} \% \text { of } \$ 200 \text { is } \$ 17 .
\end{aligned}
$$

2. (a) $\frac{13}{25} \times 100 \%=\frac{52}{100} \times 100 \%=52 \%$
(b) $\frac{105}{300} \times 100 \%=\frac{7}{20} \times 100 \%=35 \%$
(d) $5 \times \frac{2}{5} d=5 \times \frac{1}{2}$
$2 d=\frac{5}{2}$
$2 d \times \frac{1}{2}=\frac{5}{2} \times \frac{1}{2}$
$d=1 \frac{1}{4}$

Check

$\frac{2}{5} \times 1 \frac{1}{4}=\frac{2}{5} \times \frac{5}{4}=\frac{1}{2}$
(e) $\frac{7}{9} b+3-3=66-3$
$\frac{7}{9} b=63$
$\frac{7}{9} b \times \frac{9}{7}=63 \times \frac{9}{7}$
$b=9 \times 9$
$b=81$

Check

$$
\frac{7}{9} \times 81+3=63+3=66
$$

11. Method 1

Let c represent the number of baseball cards Isaac had before his birthday.
Algebraically:

$$
c+29=413
$$

$c+29-29=413-29$
$c=384$
Method 2

From the model,
$c=413-29$
$c=384$
He had 384 baseball cards before his birthday.

12. Method 1

Algebraically, let b represent the number of math tests corrected in the morning.

$$
\begin{aligned}
& b+17=43 \\
& b+17-17=43-17 \\
& b=26
\end{aligned}
$$

Method 2

From the model,

$$
\begin{aligned}
& b=43-17 \\
& b=26
\end{aligned}
$$

There were 26 math tests corrected in the morning.
13. Method 1

Algebraically, let f represent the amount of fabric in yards that Ellen had before she made the dress.

$$
\begin{aligned}
& f-2 \frac{2}{3}=3 \frac{5}{8} \\
& f-2 \frac{2}{3}+2 \frac{2}{3}=3 \frac{5}{8}+2 \frac{2}{3} \\
& f=3 \frac{15}{24}+2 \frac{14}{24} \\
& f=5 \frac{31}{24}=6 \frac{7}{24}
\end{aligned}
$$

Method 2

From the model,

$$
\begin{aligned}
& f=2 \frac{2}{3}+3 \frac{5}{8} \\
& f=2 \frac{16}{24}+3 \frac{15}{24} \\
& f=5 \frac{31}{24}=6 \frac{7}{24}
\end{aligned}
$$

Ellen had $6 \frac{7}{24}$ yards of fabric before she made the dress.

