Chapter 2: Fractions Multiplication of Fractions

2.1A Multiplication of a Proper Fraction by a Whole Number

(Practice)

5. $48 \times \frac{2}{3}$ mi = $\frac{48 \times 2}{3}$ mi = 16×2 mi = 32 mi

Julia walked 32 miles.

2.1C Multiplication of an Improper Fraction or a Mixed Number by a Whole Number

Basics

15. (a)
$$\frac{7}{5} \times 3 = \frac{7 \times 3}{5} = \frac{21}{5} = 4\frac{1}{5}$$

(b) $\frac{31}{28} \times 4^{1} = \frac{31}{2} = 15\frac{1}{2}$
(c) $8^{1} \times \frac{17}{18} = \frac{17}{2} = 8\frac{1}{2}$
(d) $8^{3} \times \frac{21}{218} = \frac{3 \times 21}{10} = \frac{63}{2} = 31\frac{1}{2}$

Practice

16.
$$4 \times 2\frac{2}{3}$$
 kg = $4 \times \frac{8}{3}$ kg = $\frac{32}{3}$ kg = $10\frac{2}{3}$ kg
The combined weight of the packages
that Wyatt wants to mail is $10\frac{2}{3}$ kg.

17.
$$12 \times 2\frac{3}{8}$$
 oz
= $\Re^3 \times \frac{19}{28}$ oz = $\frac{3 \times 9}{2}$ oz = $\frac{57}{2}$ oz = $28\frac{1}{2}$ oz

Linda bought $28\frac{1}{2}$ oz of seeds.

18. Method 1

$$3 \times 1\frac{1}{4} \text{ lb} = 3 \times \frac{5}{4} \text{ lb} = \frac{3 \times 5}{4} \text{ lb} = \frac{3 \times$$

 $\frac{15}{4}$ lb

Method 2

The pumpkin weighs
$$7\frac{1}{2}$$
 lb.

Challenge

19. Method 1

Baseball cards:

 $\frac{5}{3} \times 45 = \frac{5 \times 45}{3} = \frac{225}{3} = 75$ cards

Football cards and baseball cards:

45 + 75 = 120 cards

Hockey cards:

$$\frac{3}{4} \times 120 = \frac{3 \times 120}{3} = \frac{360}{4} = 90$$
 cards

Total cards:

$$120 + 90 = 210$$
 cards

Method 2

 $\frac{3}{4}$ as many hockey cards means $\frac{3}{4}$ of 8 units, which is 6 units.

From the model, 3 units = 45 cards 1 unit $\rightarrow \frac{45}{3} = 15$ cards 14 units $\rightarrow 14 \times 15 = 210$ cards

There are 210 cards in Josef's collection.

Challenge

10. (a) Eli's age Jamal's age Avery's age From the model, Eli's age to Avery's age is $\frac{3}{6} = \frac{1}{2}$. (b) From the model, 4 units \rightarrow 28 years 1 unit $\rightarrow \frac{28 \text{ years}}{4} = 7 \text{ years}$ 3 units \rightarrow 3 × 7 years = 21 years Avery is 21 years older than Eli. 11. mountain 1 unit bikes road bikes cruiser bikes From the model, cruiser bikes $\rightarrow 5$ units mountain bikes \rightarrow 4 units 5 units - 4 units = 1 unit1 unit \rightarrow 15 bikes 9 units \rightarrow 9 × 15 bikes = 135 bikes There are 135 road bikes in the bicycle shop. 12. Jenna's beads Koni's beads 3:5=6:10

The fraction is $\frac{5}{11}$.

7.2 Percentage of a Quantity

(Basics)

1. (a) Method 1 $100\% \rightarrow \$90$ $10\% \longrightarrow \$90 \div 10 = \9 $60\% \longrightarrow 6 \times \$9 = \$54$ Method 2 60% of \$90 $=\frac{60}{100} \times \$90$ = \$54 60% of \$90 is \$54. **(b)** Method 1 $100\% \rightarrow \$90$ $25\% \longrightarrow \$90 \div 4 = \22.50 $75\% \longrightarrow 3 \times \$22.50 = \$67.50$ Method 2 75% of \$90 $=\frac{75}{100} \times \$90$ = \$67.50 75% of \$90 is \$67.50. (c) Method 1 $100\% \rightarrow \$90$ $5\% \longrightarrow \$90 \div 20 = \4.50 Method 2 5% of \$90 $=\frac{5}{100} \times \$90$ = \$4.50 5% of \$90 is \$4.50. (d) Method 1 $100\% \rightarrow 180$ in $25\% \longrightarrow 180$ in $\div 4 = 45$ in Method 2 25% of 180 in $=\frac{25}{100} \times 180$ in = 45 in 25% of 180 inches is 45 inches.

(e) $33\frac{1}{3}\% = \frac{\frac{100}{3}}{\frac{100}{3}}$ $=\frac{100}{3} \times \frac{1}{100}$ $=\frac{1}{3}$ $33\frac{1}{3}\%$ of 105 km = $\frac{1}{3}$ of 105 km $=\frac{1}{3} \times 105 \text{ km}$ = 35 km $33\frac{1}{3}$ % of 105 km is 35 km. (f) Method 1 $100\% \rightarrow 184 \text{ cm}$ $25\% \longrightarrow 184 \text{ cm} \div 4 = 46 \text{ cm}$ $75\% \longrightarrow 3 \times 46 \text{ cm} = 138 \text{ cm}$ Method 2 75% of 184 cm $=\frac{75}{100} \times 184 \text{ cm}$ = 138 cm75% of 184 cm is 138 cm. (g) Method 1 $100\% \rightarrow \$200$ $1\% \longrightarrow \$200 \div 100 = \2 $8\frac{1}{2}\% \longrightarrow 8\frac{1}{2} \times \$2 = \$17$ Method 2 $8\frac{1}{2}\% = \frac{8.5}{100} \times \$200 = \$17$ $8\frac{1}{2}\%$ of \$200 is \$17. **2.** (a) $\frac{13}{25} \times 100\% = \frac{52}{100} \times 100\% = 52\%$ **(b)** $\frac{105}{300} \times 100\% = \frac{7}{20} \times 100\% = 35\%$

(d)
$$5 \times \frac{2}{5}d = 5 \times \frac{1}{2}$$

 $2d = \frac{5}{2}$
 $2d \times \frac{1}{2} = \frac{5}{2} \times \frac{1}{2}$
 $d = 1\frac{1}{4}$
Check
 $\frac{2}{5} \times 1\frac{1}{4} = \frac{2}{5} \times \frac{5}{4} = \frac{1}{2}$
(e) $\frac{7}{9}b + 3 - 3 = 66 - 3$
 $\frac{7}{9}b = 63$
 $\frac{7}{9}b \times \frac{9}{7} = 63 \times \frac{9}{7}$
 $b = 9 \times 9$
 $b = 81$
Check
 $\frac{7}{9} \times 81 + 3 = 63 + 3 = 66$

11. Method 1

Let *c* represent the number of baseball cards Isaac had before his birthday. Algebraically:

$$c + 29 = 413$$

 $c + 29 - 29 = 413 - 29$
 $c = 384$

 $Method \ 2$

From the model, *c* = 413 - 29

c = 384He had 384 baseball cards before his

birthday.

12. Method 1

Algebraically, let *b* represent the number of math tests corrected in the morning.

$$b + 17 = 43$$

 $b + 17 - 17 = 43 - 17$
 $b = 26$
Method 2
 43

人	
()
b	17

From the model,

$$b = 43 - 17$$

b = 26

There were 26 math tests corrected in the morning.

13. Method 1

Algebraically, let *f* represent the amount of fabric in yards that Ellen had before she made the dress.

$$f - 2\frac{2}{3} = 3\frac{5}{8}$$

$$f - 2\frac{2}{3} + 2\frac{2}{3} = 3\frac{5}{8} + 2\frac{2}{3}$$

$$f = 3\frac{15}{24} + 2\frac{14}{24}$$

$$f = 5\frac{31}{24} = 6\frac{7}{24}$$

Method 2

$$2\frac{\frac{2}{3}}{3} \text{ yd} \qquad 3\frac{5}{8} \text{ yd}$$

f

From the model,

$$f = 2\frac{2}{3} + 3\frac{5}{8}$$
$$f = 2\frac{16}{24} + 3\frac{15}{24}$$
$$f = 5\frac{31}{24} = 6\frac{7}{24}$$

Ellen had $6\frac{7}{24}$ yards of fabric before she made the dress.